Stereotactic and Functional Neurosurgery Convection-Enhanced Delivery of Autologous Cerebrospinal Fluid Enhances Basal Ganglia Visualization during MRI-Guided Deep Brain Stimulation Surgery.

Document Type

Article

Publication Date

1-1-2023

Publication Title

Stereotactic and functional neurosurgery

Keywords

washington; swedish neuro

Abstract

INTRODUCTION: The aim of this study was to determine the safety and feasibility of convection-enhanced delivery of autologous cerebrospinal fluid (CSF) for enhancing intraoperative magnetic resonance imaging (MRI) of the basal ganglia during stereotactic neurosurgery.

METHODS: This pilot study was conducted in 4 patients with Parkinson's disease (PD) who underwent MRI-guided deep brain stimulation of the globus pallidus internus (GPi). CSF was obtained via lumbar puncture after general anesthesia and prior to incision. A frameless stereotaxy system was installed, and an infusion catheter was inserted to the GPi using intraoperative MRI. Infusion of autologous CSF was performed at a convective rate of 5 µL/min with a maximum volume of infusion (Vi) of 500 mL. T2-weighted MRI scans were obtained every 15 min up to a maximum of 105 min in order to calculate the volume of distribution (Vd). Safety was assessed with adverse event monitoring, and clinical outcomes were measured with changes in unmedicated UPDRS part III and PDQ-39 scores from baseline to 6 months postoperatively.

RESULTS: All four infusions were safe and without adverse events. The mean unmedicated UPDRS part III and PDQ-39 scores improved by 24% and 26%, respectively. The Vd:Vi ratio ranged from 2.2 to 2.8 and peaked 45 min from the onset of infusion, which is when the borders of the GPi could generally be visualized based on T2-weighted MRI. Two patients underwent refinement of the stereotactic targeting based on infusion-enhanced images.

CONCLUSIONS: The convective administration of autologous CSF to deep brain structures appears safe and feasible for enhancing intraoperative MRI during stereotactic procedures. Infusion-enhanced imaging with target-specific infusates could be developed to visualize neurochemical circuits or cellular regions that currently are not seen with anatomic/structural MRI.

Clinical Institute

Neurosciences (Brain & Spine)

Department

Neurosciences

Department

Surgery

Share

COinS