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RESULTS
A regularization strategy for microbial community models. Metabolic modeling

is commonly applied to model a single strain of bacteria in log phase, where the growth
rate is approximately constant and the log of the bacterial abundance increases linearly
with time. Modeling bacterial growth in natural environments is often more complex
than this, but some information on environmental context can be extracted from the
relative abundances of bacterial taxa. Within a single individual and in the absence of
persistent dietary changes, gut microbial relative abundances tend to fluctuate around
a fixed median value over month-to-year time scales (19–21). This is consistent with a
steady-state model where bacterial growth is in equilibrium with a dilution process that
continuously removes biomass from the system (22). Using this approximation, bacte-
rial growth rates are constants �i (in 1/hour), which is compatible with the assumption
of FBA. All bacteria in the microbial community then contribute to the production of
total biomass, with an overall growth rate constant �c. The community growth rate �c

is obtained from the individual growth rates �i by a weighted mean, with the relative
contribution of species i (ai) to the total biomass serving as the weight (17, 22).

�C � �i ai�i (1)

Even though FBA can be used to obtain the maximum community growth rate, one
can see from equation 1 that there is an infinite combination of different individual
growth rates �i for any given community growth rate �c (see Fig. 1A for an example).
Various strategies have been employed in order to deal with this limitation, where the
simplest strategy is to report any one of the possible growth rates distributions for �i.
Other approaches attempt to find the set of growth rates that maximize community
growth and individual growth at the same time (17), but this is computationally
intensive and may not scale well to the species-diverse gut microbiome (18, 23). Thus,
we formulated a strategy that allows us to identify a realistic set of individual growth
rates �i and scales to large communities. The simplest case of a microbial community
is a community composed of two identical clonal strains, each present in the same
abundance. Assuming that the maximum community and individual growth rates are
equal to 1.0, there are now many alternative solutions giving maximal community
growth (Fig. 1A). However, the two populations are identical and present in the same
abundance, so one would expect that both grow at the same rate. In order to enforce
a particular distribution of individual growth rates, one can try to optimize an additional
function over the individual growth rates �i. This is known as regularization, and a
feasible regularization function should enrich for biologically relevant growth rate

FIG 1 Regularization of growth rates. (A) Regularization values for a toy model of two identical Escherichia coli populations. Two alternative solutions are shown
with different individual growth rates and respective values of regularization optima. Here, L1 denotes minimizing the sum of growth rates, whereas L2 denotes
minimizing the sum of squared growth rates. Only L2 regularization favors one over the other and identifies the expected solution where both populations
grow with the same rate. (B) Effects of different trade-off values (fraction of maximum community growth rate) on the distribution of individual genus growth
rates. Zero growth rates were assigned a value of 10�16, which was smaller than the observed nonzero minimum. Growth rates smaller than 10�6 were
considered to not represent growth (gray shaded area). (C) Pearson correlation between replication rates and inferred growth rates with different trade-off
values. “none” indicates a model without regularization returning arbitrary alternative solutions (see Materials and Methods). The dashed line indicates a
correlation coefficient of zero.
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distributions. As a heuristic, our minimal requirement for a feasible regularization
function was consistency with the observed metagenomic abundances. This means
that a taxon that is observed in the data should be able to grow. Thus, the growth rate
of a taxon should be nonzero if its abundance is nonzero. We show in Text S1 in the
supplemental material that no linear regularization function can comply with that
requirement, whereas a simple quadratic regularization, also known as L2 regulariza-
tion, does fulfill that requirement (24, 25). L2 regularization is known to distribute
magnitude over all variables, which is also consistent with a maximization of individual
growth rates and thus forms a heuristic for the simultaneous maximization of individual
and community growth rates.

L2 regularization can be readily integrated into FBA as a quadratic optimization
problem, which is not necessarily true for any generic function. In the previous example
of two identical strains, only the L2 norm correctly identifies the solution where both
strains grow at the same rate as optimal. Additionally, the L2 norm has a unique
minimum. Thus, there is only one configuration of individual growth rates �i that
minimizes the L2 norm for a given community growth rate �c. In practice, maximal
community growth might be achievable only if many taxa are excluded from growth,
for instance by giving all resources to a fast-growing subpopulation. Again, this is
inconsistent with reality if one has prior knowledge that the other taxa are present in
the gut and should be able to grow. Instead of enforcing the maximal community
growth rate, one can limit community growth to only a fraction of its maximum rate,
thus creating a trade-off between optimal community growth and individual growth
rate maximization. Community growth maximization requires full cooperativity,
whereas the L2 norm minimization represents selfish individual growth maximization.
Thus, we call our two-step strategy of first fixing community growth rate to a fraction
of its optimum and then minimizing the L2 norm of individual growth rates a “coop-
erative trade-off.” Even though it is difficult to formulate a closed form solution for this
two-step optimization, one can obtain a solution for the second optimization (minimi-
zation of regularization term) when dropping additional constraints for growth rates
(see Text S1 for derivation). In that case, growth rates are given by:

�i �
��c

aT a
ai (2)

Thus, optimal growth rates will be approximately correlated with abundance where
the slope depends on the abundance distribution and the maximum community
growth rate.

We found that computation time generally scaled well with the community size
(with most individual optimizations taking less than 5 min) when using interior point
methods, which are known to provide better performance for larger models (26).
However, we found that it was difficult to maintain numerical stability with large
community models. None of the tested solvers were able to converge to optimality
when solving the quadratic programming problem posed by the L2 norm minimization
(see Materials and Methods). Thus, we used a crossover strategy to identify an optimal
solution to the L2 minimization (see Materials and Methods).

Regularization by cooperative trade-off yields realistic growth rate estimates.
In order to test whether cooperative trade-off yields realistic growth rates, we imple-
mented and applied it to a set of 186 metagenome samples from Swedish and Danish
individuals (27), consisting of healthy individuals, individuals with type 1 diabetes, and
individuals with type 2 diabetes stratified by metformin treatment (a known modulator
of the gut microbiome) (28). Relative abundances and cleaned coverage profiles for a
total of 239 bacterial genera and 637 species were obtained with SLIMM (29) from
previously published metagenomic reads (27, 29) as described in Materials and Meth-
ods. We used ratios in coverage between replication initiator and terminus as a
measure for replication rates, which have been reported to be good proxies for
bacterial growth rates in vivo (30). This provided a set of 1,571 strain-level replication
rate measurements for the 186 samples that were used for validation of the inferred
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growth rates (1,062 and 1,113 on the genus and species levels, respectively; see
Materials and Methods). Abundance profiles for all identified genera for all samples
were connected with the AGORA models, a set of manually curated metabolic models
which currently comprises 818 bacterial species (31). Ninety-three gut-associated gen-
era within the AGORA reconstructions (version 1.03) represented more than 91% � 5%
of metagenomic reads for the 186 samples (see Table 1, genus row). Even though the
cooperative trade-off strategy is applicable to species- or even strain-level data, the
AGORA reconstructions accounted for only 52% � 9% of all bacterial species in the data
set. Thus, we decided to perform community model construction separately on the
species level as well as the genus level, which covered a larger fraction of the observed
microbiome. To accomplish this, individual strain models from AGORA were pooled into
the higher phylogenetic ranks (see Materials and Methods). After removing low-
abundance taxa (�0.1% for genera and �0.01% for species), the resulting communities
contained between 12 and 30 taxa at the genus level and between 23 and 81 taxa at
the species level. Each taxon was represented by a full genome-scale metabolic model
and connected by exchange reactions with the gut lumen, thus yielding two sets of 186
complete metagenome-scale metabolic models (one set for the species level and one
for the genus level). We used the relative read abundances as a proxy for the relative
biomass of each taxon in each sample (see Materials and Methods). Even though
relative abundances from shotgun metagenomes are not an exact representation of
bacterial mass (in grams [dry weight]), we argue that the discrepancy between the two
is probably much smaller than the variation in intertaxon abundances, which spans
several orders of magnitude (18).

The data on 186 individuals used in this analysis did not include diet, metabolomics,
or data on total microbial load. Thus, we were limited to study metabolic effects that
are driven by microbiota composition alone and not by additional factors such as diet
or total bacterial biomass. To use a moderately realistic set of import constraints for the
community models, we modeled all individuals as consuming an average Western diet
(32). Import fluxes for external metabolites were based on a reported set of fluxes for
an average Western diet (31, 33). To account for uptake in the small intestine, we
reduced all import fluxes for metabolites commonly absorbed in the small intestine by
a factor of 10 (34).

To evaluate the performance of the cooperative trade-off, we compared the inferred
growth rates with the replication rates obtained directly from sequencing data (see
Materials and Methods). First, to establish a baseline, we ran an optimization that
maximized only the community growth rate and used the distribution of growth rates
returned by the solver when applying no regularization. This was followed by applying
the cooperative trade-off strategy with various levels of suboptimality ranging from
10% to 100% of the maximum community growth rate. The predicted growth rates
were now compared to the mean measured replication rates for each taxon in each
sample using Pearson correlation (see Materials and Methods). As stated above, we

TABLE 1 Distribution of taxon assignments for ranks

Taxon No. of unique taxaa

% of readsb

Assigned readsc With modeld

Kingdom 1 100 � 0 100 � 0
Phylum 22 100 � 0 99 � 0
Class 32 100 � 0 99 � 0
Family 102 100 � 0 91 � 0
Genus 239 94 � 5 91 � 5
Species 637 79 � 9 52 � 9
aNumber of unique taxa for each rank.
bPercentages of reads are shown as means � standard deviations for the 186 samples. Only reads classified
as bacteria were considered.

cPercentage of mapped reads that could be uniquely assigned to taxa within the rank.
dPercentage of reads whose taxon had at least one representative in the AGORA genome-scale metabolic
models.
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observed that simply optimizing the community growth rate with no regularization of
the individual growth rates led to solutions where only a few taxa grew with unrea-
sonably high growth rates (doubling times shorter than 5 min), whereas the rest of the
microbial community had growth rates near zero (compare Fig. 1B with tradeoff of
“none”). Consequently, the resulting model growth rates were uncorrelated with
replication rates (mean Pearson rho � �0.02). Adding the L2 norm minimization while
maintaining maximum community growth allowed more genera to grow (see Fig. S1 in
the supplemental material) but yielded growth rates that were anticorrelated with
replication rates (mean r � �0.11). Lowering the community growth rate to suboptimal
levels strongly increased the growing fraction of the population (Fig. S1) and led to a
much better agreement with replication rates for trade-off values smaller than 0.7
(mean Pearson rho � 0.4). Calculating correlations for all samples rather than within
samples showed a similar tendency, with no regularization showing no correlation with
replication rates (r � �0.05, Pearson exact test P � 0.07) and increased agreement
up to a trade-off value of 0.5 (r � 0.21, Pearson exact test P � 2e�12). The lower
magnitude correlations in the across-sample setting is likely due to differences in diet
or bacterial load for people that were not taken into account. Overall, the best
agreement with the observed replication rates across and within samples was observed
at a trade-off value of 0.5. Using Spearman correlation instead of Pearson correlation
also identified the same optimal trade-off, albeit with a slightly lower mean correlation
within samples (Spearman r � 0.28) and slightly stronger correlation for samples
(Spearman r � 0.27, Spearman exact test P � 7e�19). Thus, the observed Pearson
correlation results were not dominated by outliers. We also observed similar perfor-
mance with the species-level models (Fig. S2). For the Spearman analysis, the best
agreement with in vivo replication rates was observed for a trade-off parameter of 0.7
(Fig. S2C). Because the genus-level models performed equally well as the species-level
models but represented a higher percentage of observed reads (Table 1), we decided
to continue all further analyses using genus models with a trade-off parameter of 0.5.

Growth rates are heterogeneous and depend on community composition. A
trade-off value of 0.5 for maximal community growth led to good agreement with
replication rates. Bacterial communities showed an average doubling time of about 6 h,
where individual genera had an average doubling time of 11 h. Community growth did
not vary substantially for samples (0.246 � 0.002 1/h), indicating that each individual’s
microbiota was almost equally efficient at converting dietary metabolites into biomass
at the community level. However, we found that individual genus-level growth rates
often varied over 5 orders of magnitude (Fig. 2). Bacteroides was predicted to be the
fastest growing genus overall and was closely followed by Eubacterium, which is
consistent with the ubiquitous presence of these abundant taxa in microbiome samples
(35, 36).

In the absence of additional constraints, L2 regularization will result in growth rates
that are linearly dependent on the taxon abundances (see equation 2 and Text S1).
However, this requires some simplifying assumptions that may not be met in the
particular constraints of the full metabolic community models. We compared growth
rate estimates obtained from numerical optimization with the approximation from
equation 2. We found that growth rates obtained with the cooperative trade-off usually
followed the derived linear relationship, albeit with a large variation (mean R2 � 0.94,
standard deviation [SD] � 0.34; Fig. 3A). Deviations from that relationship were mostly
observed for small growth rates (Fig. 3A) which could not reach the suggested growth
rate due to additional constraints on growth. Thus, the linear relationship between
growth rates and abundance holds for most growth rates but is likely inaccurate for
very small growth rates. It is important to note that even though abundances are
positively correlated with growth rates within a single individual, this is not true across
samples where one can observe a negative correlation for abundant taxa (Fig. 3A). This
is a consequence of the coefficient in equation 2, which depends on the actual
abundance distribution as well. In particular, the slope of the linear relationship
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between abundance and growth rate will be the greatest if all taxa have equal
abundances and take its lowest value when one taxon dominates.

We observed a wide variation in individual taxon growth rates for samples. Because
all of the community models were constrained by the same diet, this phenomenon was
due to microbiota composition only. To explain this variation in individual growth rates,
we hypothesized that different genera might influence each other’s growth rate, either

FIG 2 Nonzero growth rates (�10�6) for genera obtained by cooperative trade-off (50% maximum community growth rate). Each small solid circle denotes
a growth rate for one sample of the 186 samples, and larger circles with white centers denote the mean growth rate for the genus (see Materials and Methods).
Genera are sorted by mean growth rate from lowest growth rate (left) to the highest growth rate (right).

FIG 3 Codependencies of growth rates. (A) Relationship between abundance and growth rate for samples. The large scatter plot shows growth rates and
abundances for the first 10 samples. Each circle denotes one genus in one sample and its sample provenance is indicated by the color. Dashed lines denote
the linear relationship between growth rates and abundances predicted by equation 2 for each sample. The black box demonstrates how different slopes (i.e.,
as community evenness declines, so does the within-sample slope) can result in negative correlation between abundance and growth rate across the samples.
The smaller inset scatter plot shows data from all samples (Pearson rho � 0.69, n � 39,815). (B) Growth rate interactions between genera as estimated by genus
knockouts. Only interactions that induce a mean growth rate change of 0.1 for all samples (i.e., ubiquitous interactions) are shown. The color of the edges
indicates change of growth rate and type of interaction. Red edges denote competition where removal of one genus increases the growth rate of the other,
and blue edges denote cooperation or syntropy where the removal of one genus lowers the growth rate of the other. The nodes are colored by the degree
(number of total connections) from lime (few) to dark blue (many).
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