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for CKD electronic health records-based
registry: CURE-CKD
Keith C. Norris1,2* , O. Kenrik Duru1, Radica Z. Alicic3,4, Kenn B. Daratha3, Susanne B. Nicholas1,
Sterling M. McPherson3,5, Douglas S. Bell1, Jenny I. Shen1,6, Cami R. Jones3, Tannaz Moin1,7, Amy D. Waterman1,
Joshua J. Neumiller8, Roberto B. Vargas9,10, Alex A. T. Bui1, Carol M. Mangione1, Katherine R. Tuttle3,4 and on behalf
of the CURE-CKD investigators

Abstract

Background: Chronic kidney disease (CKD) is a global public health problem, exhibiting sharp increases in
incidence, prevalence, and attributable morbidity and mortality. There is a critical need to better understand the
demographics, clinical characteristics, and key risk factors for CKD; and to develop platforms for testing novel
interventions to improve modifiable risk factors, particularly for the CKD patients with a rapid decline in kidney
function.

Methods: We describe a novel collaboration between two large healthcare systems (Providence St. Joseph Health
and University of California, Los Angeles Health) supported by leadership from both institutions, which was created
to develop harmonized cohorts of patients with CKD or those at increased risk for CKD (hypertension/HTN,
diabetes/DM, pre-diabetes) from electronic health record data.

Results: The combined repository of candidate records included more than 3.3 million patients with at least a single
qualifying measure for CKD and/or at-risk for CKD. The CURE-CKD registry includes over 2.6 million patients with and/or
at-risk for CKD identified by stricter guide-line based criteria using a combination of administrative encounter codes,
physical examinations, laboratory values and medication use. Notably, data based on race/ethnicity and geography in
part, will enable robust analyses to study traditionally disadvantaged or marginalized patients not typically included in
clinical trials.

Discussion: CURE-CKD project is a unique multidisciplinary collaboration between nephrologists, endocrinologists,
primary care physicians with health services research skills, health economists, and those with expertise in
statistics, bio-informatics and machine learning. The CURE-CKD registry uses curated observations from real-world
settings across two large healthcare systems and has great potential to provide important contributions for
healthcare and for improving clinical outcomes in patients with and at-risk for CKD.

Keywords: Chronic kidney disease, Electronic health records, Healthcare systems, Hypertension, Diabetes, Pre-
diabetes, Registry, Study design
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Background
Chronic kidney disease (CKD) is a major public health
problem affecting an estimated 30 million United States
(US) adults and is the 9th leading cause of death in the US
[1]. Patients with CKD suffer from high rates of premature
morbidity including cardiovascular diseases and progres-
sion to end stage kidney disease (ESKD) as well as
premature mortality [1]. In addition, CKD imposes a high
financial burden accounting for over 7% of Medicare
spending on ESKD patients per year, while less than 1% of
the Medicare population are ESKD patients [2]. Thus, the
care of CKD patients is a national legislative priority [3–
5]. Despite several strategies to improve CKD prevention,
early intervention and outcomes, progress has been slow.
Multiple factors can influence clinical outcomes for pa-
tients with CKD, including but not limited to underlying
predisposing medical conditions, genetic risks, environ-
mental, sociocultural factors and others such as healthcare
systems and access to healthcare [6–12]. These factors
may also lead to disparities in incidence and prevalence
across different patient subgroups while also limiting opti-
mal care for all patients [6–12].
The Center for Kidney Disease Research, Education

and Hope (CURE-CKD) registry was developed to
capitalize on a unique opportunity to integrate and
harmonize electronic health record (EHR) data on 9.9
million patients treated since 2006 within two large
healthcare systems using key elements outlined by Gold-
stein et al. [13] and Navaneethan and colleagues [14].
The CURE-CKD registry is intended to provide unique
insights into real-world clinical care and outcomes from
a broad repository of over 3.3 million candidate patients
with a single entry-point CKD criteria or at-risk for
CKD, and a more select registry of over 2.6 million pa-
tients following stricter guide-line-based CKD or at-risk
CKD criteria. The objectives of the CURE-CKD registry
are to: 1) collaborate to develop standardized data struc-
tures for analysis and to harmonize two large and dis-
tinct datasets; 2) identify patients with CKD or at
increased risk for CKD (hypertension (HTN), diabetes
(DM), and prediabetes) from EHR data; 3) support site-
combined and site-specific comparative analyses of key
clinical issues including but not limited to, the preva-
lence of testing for CKD using laboratory measurements
including estimated glomerular filtration rate (eGFR),
urine albumin-to-creatinine ratio (UACR) and total
urine protein-to-creatinine ratio (UPCR); the ability to
examine eGFR decline to identify high-risk patients; the
impact of evidence-based ambulatory care such as ad-
herence to recommended pharmacotherapy, blood pres-
sure and DM control on delaying eGFR decline and
reducing rates of hospitalizations and re-hospitalizations;
and 4) identify subgroups traditionally beset with dispar-
ities in CKD and at-risk for CKD outcomes (e.g. racial/

ethnic minority, low income, rural dwelling/geolocation)
and develop strategies to eliminate disparities in care.
Given the origins of this data-rich registry, several unique
analytic and decision-making methodologies were devel-
oped to produce a database representative of real-world
data but also readily amenable to scientific inquiry. The
goal of this report is to describe the CURE-CKD registry
design and outline proposed analytic methods.

Methods/design
Ethical statement
Independent institutional review board (IRB) approvals
were obtained from the Providence Saint Joseph
Health (PSJH Health) and the University of California,
Los Angeles Health (UCLA Health) healthcare systems
(Providence IRB: 2043 CURE-CKD: CKD and At-Risk
CKD Registry, and UCLA IRB: 15–001993 Assessing
the Prevalence and Management of Chronic Kidney
Disease). The data in the repository (single entry-point
criteria for CKD or at-risk for CKD) and registry (strict
CKD or at-risk CKD criteria) are maintained in ac-
cordance with the principles of the Declaration of
Helsinki and local regulatory requirements. Informed
consent was not required as this is a limited dataset
and Health Insurance Portability and Accountability
waivers are in place.

Study design
PSJH and UCLA Health are not-for-profit healthcare
systems that established a collaborative data use agree-
ment to provide the framework for data sharing and
stewardship in a secure electronic environment. PSJH
operates 829 clinics and 50 hospitals in Washington,
Oregon, Alaska, Montana, and California. UCLA Health
has 170 clinics and 4 hospitals (with admitting privileges
at > 15 hospitals) in Southern California. Each system
uses the Epic EHR (Epic System Corporation), from
which data for the repository and resulting registry were
extracted. The larger repository and the CURE-CKD
registry are updated annually to provide additional longi-
tudinal data for existing participants, and to identify new
participants who meet inclusion/exclusion criteria.

Data validation and harmonization
Clinical (e.g. laboratory measurements, physical mea-
surements, and medication records) and administrative
encounter data were validated and harmonized between
the PSJH and UCLA Health systems to create a single
EHR-based dataset, suitable for analyses in this ongoing,
observational, multicenter study. Data structures were
proposed, discussed and approved by a multidisciplinary
team of investigators at weekly meetings and twice-
yearly in-person meetings over a two-year period. The
disciplines represented in this collaboration included
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collaborators with expertise in clinical nephrology,
endocrinology, general internal medicine, health services
research, pharmaceutical sciences, health disparities,
health economics, biostatistics, big database construc-
tion, machine learning and bioinformatics.
CURE-CKD data analysts harmonized and linked data

structures, and clinicians conducted internal and inter-
institutional validation of EHR laboratory values, medi-
cation records, and administrative encounter codes [14].
When discordance could not be resolved, the issues were
brought to CURE-CKD weekly team meetings for dis-
cussion and resolution. UCLA Health and PSJH Health
datasets were fully harmonized and maintained as both
merged and independent datasets.

Participants and inclusion/exclusion criteria
Repository participants (N = 3,364,801) were identified
from EHR laboratory and physical measurements, ad-
ministrative codes and medication records from in-
patient, outpatient and ambulatory settings (Fig. 1).
Repository individuals were identified by a series of cri-
teria including laboratory tests, with any eGFR (CKD-
EPI) measurement <60 mL/min/1.73m2; any UACR ≥30
mg/g; any UPCR ≥150 mg/g; any hemoglobin A1c
(HbA1c) ≥5.7%; any random blood glucose ≥140 mg/dL;
or fasting blood glucose ≥100 mg/dL. Individuals with
any diagnostic code for CKD, HTN, DM and prediabetes
were identified as repository participants. Extracted
physical measurements identified participants as reposi-
tory eligible with any systolic or diastolic blood pres-
sure ≥140 mm Hg or ≥90 mm Hg, respectively. Finally,
medication records were examined, with individuals pre-
scribed anti-hyperglycemic agents identified as reposi-
tory participants.
Repository patients were then screened for inclusion

in the CURE-CKD registry, following clinical practice
guidelines (Table 1). Individuals with laboratory evi-
dence of CKD (two measurements of eGFR <60mL/
min/1.73m2, UACR ≥30 mg/g, or UPCR ≥150 mg/g at
least 90 days apart), or any encounter with a diagnostic
code for CKD were entered into the registry (N = 618,
655). For adults eGFR was calculated using the Chronic
Kidney Disease Epidemiology (CKD-EPI) equation (15,
16) and for children with CKD (< 18 years) we use the
bedside Schwartz equation [17]. Individuals with phys-
ical evidence (two measurements of systolic or diastolic
blood pressure ≥ 140 mm Hg or ≥90mm Hg, respectively
at least 14 days apart) or any encounter with a diagnostic
code for HTN were entered into the registry (N = 1,915,
245; please note that patients can have more than one
disorder so the sample sizes are not mutually exclusive).
Individuals were identified and entered into the registry
(N = 91,310) if there was laboratory evidence of DM
(one measurement of HbA1c ≥6.5%; two measurements

of random or fasting blood glucose ≥200 mg/dL or ≥126
mg/dL, respectively at least 1 day, but not more than 2
years apart); one inpatient encounter or at least two out-
patient encounters with a diagnostic code of DM; or at
least one prescription for anti-hyperglycemic medication.
Anti-hyperglycemic medications were identified by
therapeutic classes (insulin, sulfonylurea, thiazolidine-
dione, dipeptidyl peptidase 4, glucagon-like peptide 1,
sodium glucose co-transporter 2, and metformin). Anti-
hypertensive, and nephrotoxic medications (nonsteroidal
anti-inflammatory drugs (NSAIDs) and proton pump
inhibitors (PPIs) were also identified. Individuals pre-
scribed metformin with a diagnostic code indicating
polycystic ovarian syndrome, with no other evidence of
DM or prediabetes inclusion criteria were subsequently
removed from the registry. All included medications
were manually reviewed and verified by the study
pharmacist and/or clinical team members. Individuals
with laboratory evidence of prediabetes (one measure-
ment of HbA1c between 5.7–6.4%; two measurements of
random or fasting blood glucose between 140 and 199
mg/dL or 100–125 mg/dL, respectively at least 1 day,
but not more than 2 years apart); or any encounter with
a diagnostic code indicating prediabetes were entered
into the registry (N = 1,026,629).

Characterizing registry participants
Registry patients have been characterized by clinical
and demographic characteristics [21]. Additionally,
registry patients have been classified by geography, in-
cluding state and urban versus rural status. A major-
ity of patients in the registry (N = 2,625,963) currently
reside in the states of Washington (41.6%), California
(31.5%), Oregon (17.2%), Alaska (3.4%) and Montana
(2.6%). Patient resident zip codes were mapped to
Rural-Urban Commuting Area (RUCA) codes, follow-
ing category C (https://depts.washington.edu/uwruca/
ruca-uses.php). Registry patients have been classified
as urban (87.5%) and rural (11.4%). Any individuals
without a zip code (1.1%) were not assigned a RUCA
code and were not classified as either living in a rural
or an urban area.

Planned CURE-CKD registry analyses
Outcomes assessment
The CURE-CKD study team will assess changes in la-
boratory and physical markers including eGFR, UACR/
UPCR, and blood pressure, as well as adherence to ef-
fective and de-implementation of ineffective strategies/
medicines over time in registry participants. Both kidney
replacement therapy (hemodialysis, peritoneal dialysis,
kidney transplant) and mortality will be obtained by
linking the CURE-CKD registry to the United States
Renal Data System (USRDS) Coordinating Center
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through a USRDS-merged dataset agreement for release
of data with limited personally identifiable information.
The USRDS provides data solely for the conduct of legit-
imate and approved biomedical, cost-effectiveness, and
other economic research. To obtain accurate mortality
data, the CURE-CKD registry will link to the National
Death Index provided by the Centers for Disease Con-
trol and Prevention, the Social Security Death Master
File, and to state death indices for the states served by
PSJH Health and UCLA Health.

Traditional statistical analyses
Planned statistical approaches include descriptive ana-
lyses of the dataset as combined and as two distinct
health systems. Statistical modeling approaches such as
linear regression, generalized estimating equations, and
linear mixed models (LMMs) will be used to investigate
change in eGFR over time. LMMs have been shown to

be the most robust approach to address the varying
number and dispersion of time points and differences in
duration of follow-up, especially in settings with high
drop-out rates (e.g. slope of eGFR decline accounting for
initiation of kidney replacement therapy and death) [22].
Notably, such a framework also allows for the examin-
ation of non-linear patterns of change over time (e.g.,
quadratic change, piecewise change) and lends itself well
to extensions of LMMs such as finite growth mixture
modeling for the examination of population-level hetero-
geneity into distinct, empirically-driven sub-groups of
meaningful change. LMMs will be used in multivariable
models to examine differences in eGFR trajectories,
change in UACR/UPCR, and other clinical parameters,
controlling for baseline demographics, clinical comor-
bidities, location (using small area analyses with geo-
coded data) and time-varying covariates (systolic blood
pressure, HbA1c, use of NSAIDs and angiotensin

Fig. 1 STROBE Diagram: Overview of participant groups by CKD and at-risk CKD categories in the Center for Kidney Disease Research, Education
and Hope (CURE-CKD) Repository and Registry
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converting enzyme inhibitors (ACEI) or angiotensin II
receptor blockers (ARB), both overall and in known
disparate subgroups (e.g. age, race/ethnicity, gender, so-
cioeconomic status, rurality). Time to event analysis
(Kaplan-Meier and Cox proportional hazard regression
models) will be used to examine CKD and at-risk CKD
differences in rates reaching clinically significant declines
in eGFR, ESKD and mortality, progression to incident
DM and others. Competing risk analyses will be con-
ducted when appropriate given both dialysis and kidney
transplant compete with the outcome of death.

Machine learning analyses
In addition to traditional regression modeling of out-
comes, machine learning methods will be used to con-
struct dynamic belief networks (DBNs) to model changes
in eGFR and to estimate the probability of developing ad-
vanced CKD over time. The DBNs will examine factors
contributing to eGFR over time, and differences in eGFR
trajectories between subgroups. The DBN’s predictive per-
formance will be compared against existing validated CKD
risk models [23–27] and other machine learning-based
methods. In addition, the DBN-based models will be
tested to determine if the models correctly predict
changes in eGFR trajectory by assessing predictions at dif-
ferent time points relative to known outcomes. Internal
validity of the DBN will be assessed by its capability to
predict the change in eGFR trajectory based on past ob-
servations, and the external validity by cross-testing be-
tween differing sites (Fig. 2), with content expert review of
transportability of findings across sites and to external
populations. Model performance will be tested in terms of

discrimination (assessing the model’s ability to distinguish
among patients with different outcomes) and calibration
(c-statistics, comparing observed and predicted event rates
for groups of patients).

Discussion
The CURE-CKD registry will provide new approaches to
fill knowledge gaps and guide the development of better
management strategies for patients with and at-risk for
CKD. The large volume of data, with over 3.3 million
unique patients available in the combined repository and
over 2.6 million patients in the registry, offers an oppor-
tunity to conduct a myriad of health services-related
studies (e.g. epidemiological research, machine learning,
clinical decision support, team-based interventions,
value-based care, reduction in health disparities) for this
patient population and traditionally under-represented
disadvantaged sub-populations (e.g., American Indian or
Asian American populations, rural-dwelling populations)
in diverse real-world settings [28].
The CURE-CKD study team will examine multiple

aspects of evidence-based care that have not been ex-
tensively validated using real-world data. For in-
stance, uncertainty persists regarding the appropriate
blood pressure target levels for CKD patients [29, 30].
Some studies support a lower target blood pressure
goal [31, 32], some have found no relationship be-
tween CKD-related outcomes and blood pressure
[33], while others have found blood pressure-related
outcomes vary by the severity of UACR/UPCR, CKD
stage, presence of DM, and other factors [34–38].
These conflicting findings have led to consternation

Table 1 Inclusion Criteria for the CURE-CKD Registry

Chronic Kidney Disease
[15–17]

1. At least two eGFR (CKD-EPI equation or Schwartz) measurements <60mL/min/1.73m2 at least 90 days apart, or
2. At least two laboratory measurements at least 90 days apart in which albuminuria was indicated; albumin to creatinine
ratio≥30 mg/g, or total urine protein ≥150mg/g, or
3. At least one encounter (inpatient or outpatient) with an ICD-9 or ICD-10 diagnosis code indicating chronic kidney dis-
ease is present

Hypertension [18] 1. At least two vital sign measurements >14 days apart with a systolic blood pressure≥140mm Hg or diastolic blood
pressure≥90mm Hg, or
2. At least one encounter (inpatient or outpatient) with an ICD-9 or ICD-10 diagnosis code indicating hypertension is
present

Diabetes Mellitus [19, 20] 1. Any qualifying laboratory result:
a. one HbA1c ≥6.5%, or
b. two random blood glucose measurements ≥200mg/dL, at least 1 day, but no more than 2 years apart, or
c. two fasting blood glucose measurements ≥126mg/dl, at least 1 day, but no more than 2 years apart, or

2. At least one medication record with a pharmaceutical class (i.e. anti-glycemic medications) for treating diabetes mellitus
(excludes individuals diagnosed with PCOS taking metformin), or
3. At least two outpatient ICD-9 or ICD-10 diagnosis codes indicating diabetes mellitus is present, or
4. At least one inpatient ICD-9 or ICD-10 diagnosis code indicating diabetes mellitus is present

Pre-Diabetes Mellitus 1. Any qualifying laboratory result:
a. one HbA1c 5.7–6.4%, or
b. two random blood glucose measurements 140–199mg/dL, at least 1 day, but no more than 2 years apart, or
c. two fasting blood glucose measurements 100–125mg/dl, at least 1 day, but not more than 2 years apart, or

2. At least one encounter (inpatient or outpatient) with an ICD-9 or ICD-10 diagnosis code indicating pre-diabetes mellitus

eGFR estimated glomerular filtration rate, CKD Chronic Kidney Disease, ICD-9/ICD-10 International Classification of Diseases, 9th Revision/10th Revision, Hb
hemoglobin, PCOS Polycystic ovarian syndrome, CKD-EPI Chronic Kidney Disease Epidemiology Collaboration
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in the clinical care of CKD patients. The recent 2017
American Heart Association’s current blood pressure
guideline recommends the goal blood pressure <130/
80 mm Hg for all CKD patients without consideration
of CKD stage [39]. Prospective studies using large
real-world datasets such as the CURE-CKD registry,
may better assist with informing evidence-based care
for patients with and at-risk for CKD, including opti-
mal targets for different patient subgroups (e.g. those
with comorbid conditions, different CKD stages). The
use of NSAIDs [40–42], PPIs [43–46], and smoking
[47–49] have been reported to be associated with
CKD onset, progression, and poor outcomes. The
CURE-CKD registry is substantially powered to exam-
ine the association of these and other CKD risk
factors in relation to several CKD protective or resili-
ence factors stratified by patient subgroups. It is also
well positioned to investigate the contributions of
DM, prediabetes and/or HTN to CKD incidence,
which will enable the development of clearer ap-
proaches to practice-based algorithms for promotion
of early detection and intervention for CKD as well as
more accurate prediction of disease progression.
In health disparate populations such as minority ra-

cial/ethnic groups, there is a paucity of data on the role
of major modifiable risk factors such as protective and
potentially harmful medications, smoking, body weight,
and lifestyle in CKD-related outcomes in real-world set-
tings. For instance, while prior studies found the degree
of blood pressure lowering with ACEI or ARB use was
greater in Whites than in Blacks [50] leading to low
use of ACEI/ARBs in Blacks, the African American
Study of Kidney Disease and Hypertension demon-
strated that inhibition of the renin-angiotensin-
aldosterone system was the most effective class of
blood pressure therapy in improving CKD and mortal-
ity outcomes in Blacks with hypertension-related CKD
[51], and has led to an improvement in the practice of
low ACEI/ARB use in Blacks. Further exploration of
ACEI/ARBs in clinical outcomes for Blacks and other
racial/ethnic groups in clinical practice is warranted.
The CURE-CKD registry provides a large, real-world

longitudinal dataset to evaluate conflicting results from
trials with observations in a clinical practice setting.
Developing a better understanding of key modifiable
risk factors and their interaction with existing clinical
targets could lead to new anti-hypertensive medication
recommendations for select subgroups of patients with
CKD and especially for those patients with rapid pro-
gression of eGFR decline.
The collaborative nature of the CURE-CKD registry

has inherent barriers that must be overcome in the de-
velopment of inter-institutional EHR-based registries. In
general terms, these limitations may include data quality,
data inconsistency or stability (e.g. lack of data stan-
dards, variations across laboratories), the validation of
data and other analytical limitations (e.g. missing data,
potential over-fitting of prediction models, multiple
comparisons, risk of false-positive associations), trust
building and the development of data use agreements
that protect all collaborative institutions and the inher-
ent limitations of observational data [52]. More specific
limitations include differences in documentation prac-
tices that exist across and between healthcare systems
[53] even with a similar EHR platform. Additional limi-
tations for inter-institutional registries such as the
CURE-CKD registry includes attrition rates that may
vary regionally due to insurance coverage, rates of
poverty, implementation or de-implementation of the
Affordable Care Act and other state or national health-
care initiatives.
By contrast, the CURE-CKD registry has many

strengths. These include a two-year preparation period
to create a robust inter-institutional registry using close
and thoughtful collaboration to define common struc-
tures and to identify and synchronize data elements.
The initial iteration of the registry includes longitudinal
data over an 11-year period, from 2006 to 2017, with
annual updates. Another strength is the use of labora-
tory and clinical data including disease-specific (e.g.
DM, prediabetes) medications to supplement adminis-
trative encounter data, rigorous data curation and lon-
gitudinal observation of a large number of registry
participants. For longitudinal assessment of major

Fig. 2 Summary of Dynamic Belief Network Model
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clinical outcomes, the CURE-CKD registry will be
linked with national and state death indices and the
USRDS to ascertain ESKD events and Medicare admin-
istrative data for hospitalization events. Also, the pro-
portion of patients with HTN (73%) and DM (31%) in
the registry are similar to the participants in the Kidney
Early Evaluation Program [54, 55] providing a level of
external validation. To address the low use of adminis-
trative encounter codes especially for conditions such
as CKD, HTN, DM, prediabetes, and other comorbidi-
ties, CURE-CKD inclusion criteria consisted of clinical
and laboratory data as well as medication records.
Finally, it is important to note that real-world observa-
tions from EHRs can be used to supplement random-
ized trials to inform best practices and clinical
guidelines as well as to generate CKD- and at-risk for
CKD-based interventions. In the future, this longitu-
dinal data source combined with statistical methods
such as propensity score matching that identify robust
comparator groups, will be an efficient learning lab to
study the impact of real world system level interven-
tions designed to prevent the onset of CKD in high risk
populations and to reduce the rate of persons with
rapid eGFR decline among those with CKD. To con-
duct research that can improve health equity, it will
never be possible to conduct randomized controlled
trials in all the groups at greatest risk, so approaches
that use robust real-world data systems with unbiased
comparator groups such as CURE-CKD hold promise
for identifying the interventions that reduce disparities
the most.
In summary, the development of novel methods to

improve the identification and early intervention for pa-
tients with or at-risk for CKD has remained a challenge
[56]. Big data analytics from EHRs have tremendous
potential to improve the quality and outcomes of care
for patients with and at-risk for CKD. With the emer-
ging addition of social determinants of health and pre-
cision medicine (i.e. omics) markers to patients in large
healthcare systems, the amount of data available to in-
form CKD care and research will soon be exponential
in nature. A combination of traditional and ma-
chine learning-based analytic approaches will be critical
to appropriately analyze these rapidly growing datasets
with careful interpretation to retain their relevance for
patient care, clinical management, and performance im-
provement. The CURE-CKD registry not only includes
comprehensive administrative encounter data, but also
includes a vast amount of clinical and laboratory mea-
surements, as well as pharmacy and procedure records.
The CURE-CKD study team is well positioned to con-
duct robust longitudinal analyses that will include im-
portant subgroups, with much greater power than most
existing sources to identify subgroup-level differences.

CURE-CKD has the potential to provide important
contributions for healthcare in patients with and at-risk
for CKD using observations from real-world settings
and to provide timely opportunity to respond to the re-
cent Executive Order on Advancing American Kidney
Health [57].
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