A Two-Biomarker Model Predicts Mortality in the Critically Ill with Sepsis.

Carmen Mikacenic

Brenda L Price

Susanna Harju-Baker

D Shane O'Mahony

Department of Pulmonary and Critical Care Medicine, Swedish Medical Center, Seattle, Washington

Cassianne Robinson-Cohen

See next page for additional authors

Follow this and additional works at: https://digitalcommons.psjhealth.org/publications

Part of the Critical Care Commons, and the Pulmonology Commons

Recommended Citation

Mikacenic, Carmen; Price, Brenda L; Harju-Baker, Susanna; O'Mahony, D Shane; Robinson-Cohen, Cassianne; Radella, Frank; Hahn, William O; Katz, Ronit; Christiani, David C; Himmelfarb, Jonathan; Liles, W Conrad; and Wurfel, Mark M, "A Two-Biomarker Model Predicts Mortality in the Critically Ill with Sepsis." (2017). Articles, Abstracts, and Reports. 1533.

https://digitalcommons.psjhealth.org/publications/1533

This Article is brought to you for free and open access by Providence St. Joseph Health Digital Commons. It has been accepted for inclusion in Articles, Abstracts, and Reports by an authorized administrator of Providence St. Joseph Health Digital Commons. For more information, please contact digitalcommons@providence.org.
Authors

This article is available at Providence St. Joseph Health Digital Commons: https://digitalcommons.psjhealth.org/publications/1533
A Two-Biomarker Model Predicts Mortality in the Critically Ill with Sepsis

Carmen Mikacenic1, Brenda L. Price2, Susanna Harju-Baker1, D. Shane O’Mahony3, Cassianne Robinson-Cohen4, Frank Radella1, William O. Hahn5, Ronit Katz4, David C. Christiani6,7, Jonathan Himmelfarb4, W. Conrad Liles5*, and Mark M. Wurfel1*

1Division of Pulmonary and Critical Care Medicine, Department of Medicine, 2Department of Biostatistics, 4Kidney Research Institute, and 5Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington; 3Department of Pulmonary and Critical Care Medicine, Swedish Medical Center, Seattle, Washington; 6Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; and 7Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts

Abstract

Rationale: Improving the prospective identification of patients with systemic inflammatory response syndrome (SIRS) and sepsis at low risk for organ dysfunction and death is a major clinical challenge.

Objectives: To develop and validate a multibiomarker-based prediction model for 28-day mortality in critically ill patients with SIRS and sepsis.

Methods: A derivation cohort (n = 888) and internal test cohort (n = 278) were taken from a prospective study of critically ill intensive care unit (ICU) patients meeting two of four SIRS criteria at an academic medical center for whom plasma was obtained within 24 hours. The validation cohort (n = 759) was taken from a prospective cohort enrolled at another academic medical center ICU for whom plasma was obtained within 48 hours. We measured concentrations of angiopoietin-1, angiopoietin-2, IL-6, IL-8, soluble tumor necrosis factor receptor-1, soluble vascular cell adhesion molecule-1, granulocyte colony–stimulating factor, and soluble Fas.

Measurements and Main Results: We identified a two-biomarker model in the derivation cohort that predicted mortality (area under the receiver operator characteristic curve [AUC], 0.79; 95% confidence interval [CI], 0.74–0.83). It performed well in the internal test cohort (AUC, 0.75; 95% CI, 0.65–0.85) and the external validation cohort (AUC, 0.77; 95% CI, 0.72–0.83). We determined a model score threshold demonstrating high negative predictive value (0.95) for death. In addition to a low risk of death, patients below this threshold had shorter ICU length of stay, lower incidence of acute kidney injury, acute respiratory distress syndrome, and need for vasopressors.

Conclusions: We have developed a simple, robust biomarker-based model that identifies patients with SIRS/sepsis at low risk for death and organ dysfunction.

Keywords: sepsis; systemic inflammatory response syndrome; biomarkers; IL-8; tumor necrosis factor receptor
Sepsis is a dysregulated response to infection that is one of the most common reasons for intensive care unit (ICU) admission in the United States and a major cause of mortality in critically ill populations worldwide (1–5). The systemic inflammatory response syndrome (SIRS) criteria, designed to encapsulate the physiologic response to critical illness, have been part of the sepsis definition for more than two decades (6, 7). Recent proposed changes to this definition reflect the need to better stratify patient risk in a heterogeneous syndrome (8). The Acute Physiology and Chronic Health Evaluation (APACHE) III score is a well-validated predictor of hospital mortality in ICU patients, but calculation of the score requires extensive clinical data collected over the first 24 hours of admission, thereby limiting its utility for bedside decision-making (9). Identification of patients at low risk for mortality or organ dysfunction in sepsis may improve resource use and allow for more targeted approaches for rational clinical trials.

Endothelial dysfunction, inflammation, and apoptosis have been implicated in the pathogenesis of sepsis. Circulating biomarkers may indicate the level of activity of these pathways and have prognostic utility for the early identification of patients at risk for multiorgan dysfunction and death. Prior work has shown that angiopoietin (Ang)-1 and Ang-2, angiogenic factors that regulate endothelial stability and permeability, respectively, are predictive of mortality in patients with severe sepsis (10, 11). Circulating levels of inflammatory pathway proteins IL-6, IL-8, and soluble tumor necrosis factor-α receptor 1 (sTNFR-1) have been shown to predict mortality or organ dysfunction in patients with established septic shock (12–16). Apoptosis has also been implicated in the pathophysiology of sepsis-related organ failure (17, 18). We have previously shown that early measurements of circulating biomarkers of these pathways are associated with mortality in patients admitted to the ICU meeting SIRS criteria and in patients with bacteremia (19, 20). We hypothesized that a multiple-biomarker-based model could estimate the probability of 28-day mortality in a diverse group of critically ill patients presenting with SIRS and/or sepsis.

Some of the results of these studies have been previously reported in the form of an abstract (21).

Methods

Derivation and Internal Test Cohort

Patients were recruited between 2006 and 2010 from ICUs at Harborview Medical Center (Seattle, WA) (19, 22). Adult patients who met two out of four SIRS criteria were prospectively enrolled on admission to the ICU. We obtained plasma specimens within 24 hours of admission to the ICU. The study was approved by the University of Washington Human Subjects Research Committee and granted a waiver of consent.

External Validation Cohort

Patients were enrolled from ICUs at Massachusetts General Hospital (Boston, MA) between 1999 and 2010 (23). Adult patients were enrolled on admission to the ICU if they had a defined risk factor for acute respiratory distress syndrome (ARDS) including sepsis, trauma, multiple transfusion, or aspiration. Plasma specimens were obtained within 48 hours of ICU admission (24). This study was approved by the Massachusetts General Hospital Human Subjects Research Committee and signed consent was obtained from each patient or legal surrogate.

Biomarker Measurement

Plasma concentrations of Ang-1, Ang-2, IL-6, IL-8, sTNFR-1, soluble vascular cell adhesion molecule-1 (sVCAM-1), granulocyte colony–stimulating factor, and soluble Fas were measured using an immunoassay-based method (Meso Scale Discovery, Rockville, MD) (19). We assigned the lower limit or upper limit of detection to samples that fell below or above the range of detection, respectively. The detection limits and number of samples below or above the limits of detection are available in the online supplement METHODS section and Table E1.

Model Selection and Development

Models were constructed from the log_{10}-transformed biomarkers and the covariates of age, sex, source of ICU admission (medical/surgical), diabetes, chronic kidney disease, cirrhosis, and body mass index (Figure 1).

Our primary outcome of interest was inpatient mortality at Day 28 after enrollment. The initial model-building methodology used least absolute shrinkage and selection operator (LASSO) (25). The LASSO is a model-building strategy that performs variable selection by constraining the sum of the regression coefficients, thereby selecting variables for the model and penalizing less predictive variables to prevent overfitting. We subsequently identified the best two-biomarker model using all subsets selection logistic regression. We also considered the Sequential Organ Failure Assessment score (SOFA) as a continuous variable to predict mortality (26). Discrimination power was quantified using C statistics (area under the receiver operating characteristic curve [AUC]) and appropriate goodness of fit was verified via Hosmer-Lemeshow chi-square statistics (27).

We compared the capability of these models with APACHE III to predict 28-day mortality using the 95% confidence interval (CI) for the difference in the AUC (28, 29). Akaike information criterion values were calculated to assess relative goodness of fit of the models (30). We performed a sensitivity analysis to see how the models performed when limited to...
patients with sepsis. Sepsis was defined as "Sepsis-2" for patients who met two or more SIRS criteria with suspected infection (7) or as "Sepsis-3" for patients who had a Day 0 SOFA score of greater than or equal to 2 with suspected infection (8).

We identified a threshold score for the mortality prediction model to maximize positive predictive value (PPV) defined as the probability of those with a score above the threshold dying within 28 days. We also identified a threshold score that gave a negative predictive value (NPV) of 0.95, where NPV is defined as the probability of those with a score below the threshold not dying within 28 days.

Analysis of Organ Failure

We compared the extent of persistent organ dysfunction (Day 4) (31) or length of stay among survivors in those falling above or below the NPV threshold using a Wilcoxon rank sum test. We compared proportions of ARDS (Berlin criteria within the first 7 d) (32), severe acute kidney injury (AKI; Acute Kidney Injury Network score ≥2) (18), or cardiovascular dysfunction (need for vasopressors within first 72 h), or any combination of these three endpoints.

Two sided P values of P less than 0.05 were considered significant. All statistical analyses were performed in R (R Core Team 2015) (33). Additional details regarding patient enrollment, biomarker measurement, and model development are detailed in the online supplement.

Results

Patients in the derivation (n = 888), internal test (n = 278), and external validation cohorts (n = 759) were predominantly male and middle aged (Table 1). The derivation cohort comprised white persons previously used in genetic studies from our group (19), whereas the internal test cohort was nonwhite and the external validation cohort was of diverse race. The derivation cohort was comprised of a mixed medical (n = 480; 54%) and surgical population (n = 408; 46%), whereas the internal test cohort and external validation cohort were predominantly medical ICU patients (n = 215, 77% and n = 718, 95%, respectively). Most of the patients in all three cohorts met the definition of Sepsis-2 or Sepsis-3 (7, 8). The 28-day mortality was 12% in the derivation cohort (n = 104), 9% in the test cohort (n = 25), and 13% in the external validation cohort (n = 97). The distribution of the biomarker concentrations (median and interquartile range) are listed in Table E2.
Table 1. Subject Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Derivation (n = 888)</th>
<th>Internal Test (n = 278)</th>
<th>External Validation (n = 759)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, yr, mean ± SD</td>
<td>56 ± 16</td>
<td>54 ± 16</td>
<td>61 ± 18</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>564 (64)</td>
<td>199 (72)</td>
<td>487 (64)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>888 (100)</td>
<td>0 (0)</td>
<td>696 (92)</td>
</tr>
<tr>
<td>African American</td>
<td>0 (0)</td>
<td>145 (52)</td>
<td>21 (2.8)</td>
</tr>
<tr>
<td>Asian/Pacific Islander</td>
<td>0 (0)</td>
<td>30 (9)</td>
<td>29 (3.8)</td>
</tr>
<tr>
<td>Native American</td>
<td>0 (0)</td>
<td>43 (15)</td>
<td>1 (0.13)</td>
</tr>
<tr>
<td>BMI, kg/m², mean ± SD</td>
<td>30 ± 10</td>
<td>31 ± 23</td>
<td>28 ± 8</td>
</tr>
<tr>
<td>Comorbidities, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>221 (25)</td>
<td>104 (37)</td>
<td>200 (26)</td>
</tr>
<tr>
<td>Cirrhosis</td>
<td>75 (8.4)</td>
<td>17 (6.1)</td>
<td>28 (3.7)</td>
</tr>
<tr>
<td>Chronic kidney disease</td>
<td>63 (7.1)</td>
<td>36 (13)</td>
<td>—</td>
</tr>
<tr>
<td>Source of critical illness, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical</td>
<td>480 (54)</td>
<td>215 (77)</td>
<td>718 (95)</td>
</tr>
<tr>
<td>Surgical</td>
<td>408 (46)</td>
<td>63 (23)</td>
<td>41 (5.4)</td>
</tr>
<tr>
<td>Day 0 SOFA >=2, n (%)</td>
<td>703 (79)</td>
<td>229 (82)</td>
<td>749 (99)</td>
</tr>
<tr>
<td>Source of critical illness, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sepsis-2</td>
<td>698 (79)</td>
<td>206 (74)</td>
<td>614 (81)</td>
</tr>
<tr>
<td>Sepsis-3</td>
<td>566 (64)</td>
<td>177 (64)</td>
<td>604 (80)</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>179 (20)</td>
<td>72 (26)</td>
<td>340 (45)</td>
</tr>
<tr>
<td>Other</td>
<td>299 (34)</td>
<td>95 (34)</td>
<td>145 (19)</td>
</tr>
<tr>
<td>APACHE III, mean ± SD</td>
<td>51 ± 26</td>
<td>51 ± 26</td>
<td>67 ± 25</td>
</tr>
<tr>
<td>Day 4 SOFA score, mean ± SD</td>
<td>3.0 ± 2.9</td>
<td>3.1 ± 3.2</td>
<td>—</td>
</tr>
<tr>
<td>ICU LOS among survivors</td>
<td>7.7 ± 11</td>
<td>7.4 ± 10</td>
<td>6.5 ± 6.9</td>
</tr>
<tr>
<td>d, mean ± SD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28-d mortality, n (%)</td>
<td>104 (12)</td>
<td>25 (9)</td>
<td>97 (13)</td>
</tr>
</tbody>
</table>

Definition of abbreviations: APACHE = Acute Physiology and Chronic Health Evaluation; BMI = body mass index; ICU = intensive care unit; LOS = length of stay; SOFA = Sequential Organ Failure Assessment.

*SOFA scores greater than or equal to 2 on Day 0.
†Source of critical illness is not mutually exclusive.
‡ICU LOS among patients who survived 28 days.

Mortality Prediction Model Testing and Validation

We tested the ability of the two biomarker model with IL-8 and sTNFR-1 to discriminate 28-day mortality in an internal test and external validation cohort. The AUC in the internal test cohort was 0.75 (95% CI, 0.65–0.85) (Figure 2B) and in the external validation cohort was 0.77 (95% CI, 0.72–0.83) (Figure 2C). This performed similarly to APACHE III in the internal test cohort (AUC, 0.77; 95% CI, 0.68–0.86) (Figure 2B) and in the external validation cohort (0.83; 95% CI, 0.79–0.87) (Figure 2C). Adding our two-biomarker model to APACHE III slightly improved the performance above APACHE III alone in the derivation (AUC, 0.83 [95% CI, 0.80–0.87] vs. AUC, 0.75 [95% CI, 0.70–0.80]; difference of 0.08 [95% CI, 0.004–0.15]), but not in the internal test (AUC, 0.79 [95% CI, 0.70–0.88] vs. AUC, 0.77 [95% CI, 0.68–0.86]; difference of 0.03 [95% CI, −0.14 to 0.20]) or external validation cohort (AUC, 0.82 [95% CI, 0.77–0.87] vs. 0.83 [95% CI, 0.79–0.87]; difference of 0.03 [95% CI, −0.05 to 0.11]) (Table 2). For comparison, a Day 0 SOFA score of 2 or greater, recently proposed as a new criteria for sepsis in the ICU (34) and shown to predict mortality in a general ICU population, has a maximum AUC in these cohorts of 0.60 (see Figure E1). When SOFA was considered as a continuous variable for mortality prediction, it performed similarly to the two-biomarker model in the internal test cohort (AUC, 0.75; 95% CI, 0.66–0.84). SOFA was not as predictive as the two-biomarker model in the external validation cohort (AUC, 0.67; 95% CI, 0.61–0.73) (Table 2) and was not a good fit on the basis of the Hosmer-Lemeshow test ($P < 0.001$).

We performed sensitivity analyses to test our ability to discriminate mortality when limited to patients with sepsis defined as Sepsis-2 and Sepsis-3 in all cohorts. When limited to patients with either definition of sepsis, we found that the combination of IL-8 and sTNFR-1 predicted mortality with similar AUC values (see Figure E3).

Based on our model using IL-8 and sTNFR-1, we observed increasing mortality for each quartile of model score in the two-biomarker model was carried forward for internal and external validation.
discovery, internal test, and external validation cohort (see Table E5). We derived PPV and NPV for mortality (Table 3). A model score threshold of 0.54 maximized the PPV in the derivation cohort at 0.6 (Table 3). A model score below the threshold of 0.135 had an NPV of 0.95 in the derivation cohort that was identical in the internal test dataset (NPV, 0.95) and similar in the external validation cohort (NPV, 0.93).

Other ICU Outcomes

Although mortality is a relevant endpoint, other outcomes including organ dysfunction and ICU length of stay are clinically important. Need for vasopressors, AKI, and ARDS are clinical factors that often warrant admission to the ICU. We wanted to characterize whether patients above or below the model score threshold derived to maximize NPV for mortality had differences in these outcomes. In the derivation cohort, 246 patients had scores less than 0.135, whereas 642 patients had model scores greater than 0.135. Patients below the threshold had lower median SOFA scores at 4 days (2 vs. 4; *P* < 0.001) (see Figure E4A) and among survivors, lower median length of ICU stay (4 d vs. 7 d; *P* < 0.001) (see Figure E4B). The internal test cohort patients (n = 78) below the threshold also had lower median Day 4 SOFA scores (4 vs. 5; *P* < 0.001) and lower median ICU length of stay (4 d vs. 5 d; *P* < 0.001). The external validation cohort patients below the threshold (n = 229) had lower ICU length of stay (3 d vs. 6 d; *P* < 0.001). Day 4 SOFA scores were not available for the external validation cohort.

We also examined the proportions of patients above and below the model threshold with either AKI, need for vasopressors within 72 hours, or ARDS within 7 days of ICU admission. Among patients with scores below the threshold (0.135) in the derivation, internal test, and external validation cohorts, there was a lower proportion of each ICU-defining...
illness compared with patients with scores above the threshold (Table 4). The most dramatic example is the proportion of patients with severe AKI (Acute Kidney Injury Network score ≥2), which was 0.05 for patients below the threshold, but was 0.37 for patients above the threshold.

Discussion

In this study, we show that a simple predictive model based on early plasma measurements of IL-8 and sTNFR-1 predicts mortality in a diverse group of critically ill patients meeting criteria for SIRS at two academic medical centers. To our knowledge, this is the largest and most inclusive study of a predictive biomarker model in SIRS/sepsis. Prior reports in smaller groups of patients have suggested the potential utility of sTNFR-1 and IL-8 for prediction of mortality in patients with sepsis. A small single center study (n = 52) in adult patients with septic shock showed that circulating sTNFR-1 levels were modestly predictive of mortality and that sTNFR-1 levels remained elevated in nonsurvivors compared with survivors for 48 hours (14).

In patients with ARDS inclusion of circulating sTNFR-1 levels in a multibiomarker prediction model was predictive of death (35). IL-8 was also included in a multiple-biomarker decision tree model designed to predict mortality in adult and pediatric patients with septic shock (13, 36) and adult patients with ARDS (35). Low levels of IL-8 in a pediatric septic shock cohort predicted a high likelihood of survival (37). In contrast, our study used sTNFR-1 and IL-8 in a simple two-biomarker predictive model in two large cohorts of ICU patients with SIRS/sepsis. IL-8 and sTNFR-1 were among biomarkers shown by latent class analysis to distinguish a subphenotype of ARDS that has differential mortality and responsiveness to fluid management strategies (35, 38). This suggests that these biomarkers could be considered to better understand subphenotypes or predictive enrichment of treatment responsiveness in sepsis (39).

Our model is comparable with APACHE III in terms of mortality prediction in the three cohorts. Notably, the APACHE III score requires measurement of multiple variables over a 24-hour time period, limiting its utility for early clinical decision-making. Thus, our simple model may represent a good alternative for early mortality prediction in this patient population. In addition, our biomarker model could be developed for rapid point-of-care testing moving closer toward a goal of precision medicine.

Table 3. Negative and Positive Predictive Values for the Two-Biomarker Model

<table>
<thead>
<tr>
<th>Cohort</th>
<th>Threshold Goal</th>
<th>Model Score Threshold*</th>
<th>Patients above/below Threshold (n)</th>
<th>PPV†</th>
<th>NPV‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derivation</td>
<td>NPV 0.135</td>
<td>PPV 0.540</td>
<td>642/246</td>
<td>0.29</td>
<td>0.95</td>
</tr>
<tr>
<td>Internal test</td>
<td>NPV 0.135</td>
<td>PPV 0.540</td>
<td>200/78</td>
<td>0.18</td>
<td>0.95</td>
</tr>
<tr>
<td>External validation</td>
<td>NPV 0.135</td>
<td>PPV 0.540</td>
<td>530/229</td>
<td>0.29</td>
<td>0.93</td>
</tr>
</tbody>
</table>

Table 4. Proportions of Severe Organ Dysfunction among Patients below or above the Model Threshold

<table>
<thead>
<tr>
<th>Cohort</th>
<th>Model Score below 0.135</th>
<th>Model Score above 0.135</th>
<th>All Subjects: Total Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Patients with Outcome</td>
<td>Total with Observation*</td>
<td>Prop†</td>
</tr>
<tr>
<td>ARDS in 7 d§</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Derivation</td>
<td>116 642</td>
<td>0.18</td>
<td>52 246</td>
</tr>
<tr>
<td>Internal test</td>
<td>39 203</td>
<td>0.19</td>
<td>25 75</td>
</tr>
<tr>
<td>External validation</td>
<td>30 460</td>
<td>0.07</td>
<td>41 299</td>
</tr>
<tr>
<td>AKI (AKIN >2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Derivation</td>
<td>34 639</td>
<td>0.05</td>
<td>88 241</td>
</tr>
<tr>
<td>Internal test</td>
<td>13 200</td>
<td>0.06</td>
<td>41 75</td>
</tr>
<tr>
<td>External validation</td>
<td>3 198</td>
<td>0.02</td>
<td>48 179</td>
</tr>
<tr>
<td>Shock§</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Derivation</td>
<td>109 642</td>
<td>0.17</td>
<td>97 246</td>
</tr>
<tr>
<td>Internal test</td>
<td>33 203</td>
<td>0.16</td>
<td>31 75</td>
</tr>
<tr>
<td>External validation</td>
<td>150 373</td>
<td>0.40</td>
<td>153 248</td>
</tr>
</tbody>
</table>

Definition of abbreviations: NPV = negative predictive value; PPV = positive predictive value; sTNFR-1 = soluble tumor necrosis factor receptor 1.

*Model score threshold obtained from model fit to the discovery dataset using IL-8 and sTNFR-1 [logit (probability of death) = −12.8 + 2.36 × log10(sTNFR-1 concentration) + 0.80 × log10(IL-8 concentration)].
†PPV is the probability of those with a score above the threshold dying within 28 days.
‡NPV is the probability of those with a score below the threshold not dying within 28 days.
§ARDS in 7 d = acute respiratory distress syndrome.
|| Definition of abbreviations: AKI = acute kidney injury; AKIN = Acute Kidney Injury Network; ARDS = acute respiratory distress syndrome; Prop = proportion.
|**Number of patients with score below 0.135 with organ failure data available for analysis.
|†Proportion of subjects with outcome.
|‡Number of subjects with score above 0.135 with organ failure data available for analysis.
|§Presence of ARDS within 7 days as defined by Berlin criteria.
|¶Severe AKI as defined by an AKIN score ≥2.
|‖Vasopressors required in first 72 hours of admission.

The clinical definition of sepsis is in a state of evolution. Proposed changes have moved from SIRS criteria (Sepsis-2) to an approach based on manifestations of organ dysfunction (Sepsis-3) (6–8). Part of the rationale is that SIRS criteria may not be effective because they define a heterogeneous population that may not be at elevated risk for adverse outcomes (40, 41). Notably, in contrast to the recent publication supporting the Sepsis-3 criteria, in our cohorts a SOFA score on Day 0 of 2 or greater was a poor predictor of mortality (34). Using SOFA score as a continuous variable increased its predictive capacity, but the biomarker model still outperformed the SOFA in the derivation and external validation cohorts. This may be explained by differences in underlying diagnoses and our inclusion criteria that mandated presence of SIRS criteria on enrollment resulting in a more severely ill population or decreased specificity of the Sepsis-3 definition. Regardless, the strong performance of our model using both definitions of sepsis suggests that it will be robust when applied to other sepsis populations.

The most straightforward application of our model would be in the identification of patients at low risk of death and organ dysfunction. We identified a model score threshold that had an NPV for mortality in the derivation/test cohorts of 0.95 and remained high in the validation cohort (0.93). Patients below the same threshold had less persistent organ dysfunction measured by Day 4 total SOFA score, proportionally less AKI, need for vasopressors, ARDS, and among survivors, shorter ICU length of stay. Our model built for maximizing NPV for mortality distinguishes certain organ failure, such as AKI, better than shock. Future models should be built directly for organ failure to maximize the utility of these biomarkers as a clinical tool. Taken together, these findings suggest that our model might be helpful to clinicians in early triage decisions in patients with sepsis and to assist researchers in rational enrollment for clinical trials.

Our study has several limitations. First, we studied only patients who met SIRS criteria and were admitted to the ICU at academic medical centers. This limits the generalization of our results to a broader set of critically ill patients. Second, we did not include several clinical measurements commonly used for assessment of severity including arterial lactate, procalcitonin, or C-reactive protein (42–46). However, lactate measurements were not included in the recently proposed sepsis definition for the lack of improvement in predictive capacity above the proposed model and procalcitonin has not shown strong evidence of predictive utility as a stand-alone biomarker (8, 34, 47). Third, our external validation cohort was recruited over an extended period of time. This may lead to heterogeneity in clinical treatment over that time frame. Nonetheless, our model performs well despite that heterogeneity. Finally, although in this study we aimed for a parsimonious and easily clinically applicable model, other biomarkers (IL-6, Ang-1, Ang-2, sVCAM-1) did have some, albeit limited, incremental prognostic value. Future studies need to explore whether other biomarkers might provide additional value, particularly for specific forms of organ dysfunction.

In summary, we have developed and validated a robust biomarker-based model that predicts mortality in a large heterogeneous population of critically ill patients with SIRS/sepsis. This algorithm could potentially be incorporated in either laboratory-based or point-of-care diagnostics to guide management of critically ill patients. Future studies will explore whether our model can improve early clinical decision-making in patients with sepsis.

Author disclosures are available with the text of this article at www.atsjournals.org.

References

