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Article

Path-seq identifies an essential mycolate
remodeling program for mycobacterial
host adaptation
Eliza JR Peterson1 , Rebeca Bailo2 , Alissa C Rothchild3 , Mario L Arrieta-Ortiz1, Amardeep Kaur1,

Min Pan1, Dat Mai3, Abrar A Abidi1, Charlotte Cooper2, Alan Aderem3, Apoorva Bhatt2,* &

Nitin S Baliga1,4,5,**

Abstract

The success of Mycobacterium tuberculosis (MTB) stems from its
ability to remain hidden from the immune system within macro-
phages. Here, we report a new technology (Path-seq) to sequence
miniscule amounts of MTB transcripts within up to million-fold
excess host RNA. Using Path-seq and regulatory network analyses,
we have discovered a novel transcriptional program for in vivo
mycobacterial cell wall remodeling when the pathogen infects
alveolar macrophages in mice. We have discovered that MadR
transcriptionally modulates two mycolic acid desaturases desA1/
desA2 to initially promote cell wall remodeling upon in vitro
macrophage infection and, subsequently, reduces mycolate biosyn-
thesis upon entering dormancy. We demonstrate that disrupting
MadR program is lethal to diverse mycobacteria making this evolu-
tionarily conserved regulator a prime antitubercular target for
both early and late stages of infection.
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Introduction

Mycobacterium tuberculosis (MTB) infection occurs by inhalation of

bacilli-containing aerosols. Alveolar macrophages, which line the

airway, are the first host cells to phagocytize the bacteria. This ini-

tial contact of MTB with alveolar macrophages begins a complex

battle between bacterial virulence and host immunity, orchestrated

in large part by intricate gene regulatory pathways (Galan & Wolf-

Watz, 2006; Medzhitov, 2007). As such, measuring gene expression

in vivo is central to our understanding of TB disease control and

progression (Flynn et al, 2011).

RNA-seq provides a sensitive method for global gene expres-

sion analysis. Specific for infection biology, dual RNA-seq meth-

ods have allowed simultaneous profiling of host and pathogen

RNA. However, the striking excess of eukaryotic over bacterial

RNA limits the coverage of pathogen transcripts in dual RNA-seq

studies (Avraham et al, 2015, 2016, Rienksma et al, 2015; Wester-

mann et al, 2012; Westermann et al, 2016), and methods to par-

tially enrich for bacterial transcripts have had limited success

(Humphrys et al, 2013; Mavromatis et al, 2015). It is clear that

more sensitive approaches are needed to profile the tran-

scriptional state of the pathogen during infection, especially

in vivo.

To improve the coverage of pathogen transcripts, we made

use of biotinylated oligonucleotide baits that are complementary

to the pathogen transcriptome. The baits are hybridized to

mixed host–pathogen RNA and used to enrich pathogen tran-

scripts for sequencing. Approaches using biotinylated genome

fragments have previously been used to enrich specific tran-

scripts of intracellular pathogens (Graham & Clark-Curtiss, 1999;

Morrow et al, 1999) or perform genome-wide transcriptome pro-

filing of fungal RNA from infected host cells (Amorim-Vaz et al,

2015). Here, we applied our pathogen-sequencing (Path-seq)

method to explore transcriptional changes in MTB (one-fourth

the size of fungus, Candida albicans) following infection in

mice. Path-seq data along with network modeling have led to

discovery that MTB transcriptionally regulates mycolic acids dur-

ing infection of host cells, influencing virulence and persistence

of the pathogen.
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Results

Development of Path-seq

To enrich the bacterial pathogen transcripts, we used Agilent eArray

(Ong et al, 2011) to create a custom bait library that covers all MTB

transcripts at even intervals. Our MTB library contains 35,624

probes, each with biotinylated oligonucleotides of 120 base lengths.

The bait library composition is modular and can be designed to

cover specific transcripts of interest. Similarly, transcripts such as

rRNA can be excluded or gene sequences altered for polymorphisms

found in clinical strains (Fleischmann et al, 2002). For this study,

we chose all transcripts of MTB H37Rv for complete coverage and

comparison with standard RNA-seq results.

To assess enrichment of pathogen transcripts, we first used RNA

isolated from murine bone marrow-derived macrophages (BMDMs)

spiked with 0.1% MTB RNA. A typical mammalian cell contains on

the order of 20 picograms of RNA, which is roughly two orders of

magnitude more than a single bacterial cell (Alberts et al, 1994).

Accounting for BMDMs that might not be infected and based on

intracellular sequencing studies from literature (Avraham et al,

2016; Westermann et al, 2016), we estimated 0.1% pathogen RNA

would be representative of a typical in vitro infection. We performed

double rRNA depletion using Illumina Ribo-Zero Gold Epidemiology

Kit and used the SureSelect protocol to generate strand-specific

libraries for sequencing. Half of the library was then indexed for

sequencing as the “RNA-seq” sample, and the other was hybridized

to the probes, amplified, and indexed as the “Path-seq” sample

(Fig 1A). We performed three replicate experiments of the mock

infection using the same MTB RNA. With the probe hybridization,

the percentages of reads aligned to MTB were increased up to

840-fold. Both the normalized read counts (Fig 1B) and enrichment

efficiency (inset Fig 1B) were highly reproducible across three repli-

cate samples. Repeating the Path-seq method with spiked RNA sam-

ples, we increased the proportion of macrophage RNA and were

able to quantify MTB transcripts from one millionth of the host RNA

(1.75% of all reads aligned to MTB genomes).

To validate the enrichment protocol yielded quantitatively reli-

able read counts, we investigated the correlation between the

RPKMs obtained from the sequencing of RNA from in vitro grown

MTB, without enrichment (RNA-seq), and the RPKM values

obtained with the enrichment protocol (Path-seq) using the same

0.1% MTB RNA with host RNA (BMDMs). Even using different

library preparation kits (Illumina for RNA-seq and Agilent for Path-

seq), the correlation of RPKMs was 0.92–0.93 (Fig 1C), demonstrat-

ing the enrichment process was efficient and accurate for gene

expression analysis.

Analysis of MTB transcriptome during in vivo infection using
Path-seq method

Little is known about the transcriptional state of the pathogen dur-

ing infection of animal models (Talaat et al, 2004); technical chal-

lenges have limited these studies. Given the enrichment capabilities

of the Path-seq method, we evaluated the use of the approach to

study the transcriptome of MTB isolated from alveolar macrophages

(AMs) of infected mice. We used fluorescence-activated cell sorting

(FACS) and gating strategies to isolate AMs from bronchoalveolar

lavage (BAL) of mice at 24 h post-aerosol infection with MTB. We

isolated AMs from BAL, instead of whole lung tissue, to avoid the

harsh digestion step at 37°C that can alter the transcriptional state

of the cells. RNA extracted from AMs in BAL of 10 mice yielded
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Figure 1. Path-seq workflow and validation.

A Total RNA from mock infection or infected cells was depleted of rRNA, and cDNA libraries were prepared. Libraries were then either indexed and sequenced directly
for host transcripts or enriched using pathogen-specific oligonucleotides bound to beads. After hybridization, enriched libraries were indexed, sequenced, and reads
assigned to host or pathogen genomes in silico.

B Correlation between replicate mock infections. Path-seq reads were recovered from samples of macrophage RNA spiked with 0.1% MTB RNA. Scatter plot of log2
RPKM values is shown with Pearson correlation, P-value < 0.0001. Inset summarizes the mock infection replicates and their fraction of MTB reads (of all aligned
reads) from Path-seq and standard RNA-seq methods.

C Correlation between MTB RNA sequenced by RNA-seq (Illumina TruSeq Library Prep) and the same MTB RNA sample combined with macrophage RNA at 1:1,000 ratio
and processed using Path-seq method. Scatter plot of log2 RPKM values is shown with Pearson correlation, P-value < 0.0001.
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~100 lg of total RNA. Therefore, we first evaluated the Path-seq

method using 0.3 lg of BMDM RNA spiked with 0.005% MTB RNA,

to simulate mixed host and pathogen RNA composition of a sample

from an in vivo infection. We performed Path-seq with two repli-

cates, and alignment analysis revealed the percentages of reads that

aligned to MTB were 38 and 27%, an approximate 10,000-fold

enrichment.

After evaluating the Path-seq methods’ feasibility for in vivo

MTB transcriptome analysis, we used flow cytometry to isolate

AMs (average of 4.3% of all cells and 83.1% of live, CD45+

cells) in BAL of 30 mice 24 h after infection with wild-type MTB

(Appendix Fig S1A). Infection, FACS sorting (Appendix Fig S1B),

and RNA extraction were repeated with three independent mouse

infections (three biological replicates), yielding an average of

~300 lg total RNA per replicate. The Path-seq enrichment was

performed and resulted in 17, 8, and 5% of the entire reads

aligning to MTB from each of the replicates. We compared the

MTB read counts between the in vivo samples with extracellular

samples, biological replicates of RNA extracted from MTB grown

in 7H9 media for 24 h (starting OD600 = 0.1). Both the in vivo

and extracellular samples were processed by Path-seq. While the

percentage of non-zero reads and total read counts are lower in

the in vivo samples, the mean count per gene and coefficient of

variation are the same between the two conditions

(Appendix Table S1). This gives us confidence that for genes with

detectable reads, we are measuring real expression levels. We

suspect genes with non-detectable reads are a result of the minis-

cule amount of MTB RNA compared to host RNA in the in vivo

samples, and not a reflection of real gene expression changes.

Therefore, excluding genes with zero counts in all in vivo repli-

cates resulted in 3,505 MTB genes (62% of genome) with

sequenced expression measurements from in vivo infection using

Path-seq. These results (raw data and normalized read counts for

ALL genes are available in GEO: GSE116394) present the most

comprehensive transcriptome profiling of MTB from in vivo infec-

tion and a major technical advancement for researchers studying

host–pathogen interactions.

To calculate differentially expressed genes between the in vivo

and extracellular samples, we excluded in vivo biological replicate

3, which had significantly lower total read counts compared to all

other samples (summarized in Appendix Table S1). The lower depo-

sition of replicate 3 suggests a lower amount of starting MTB could

be the reason for the low read count. Differential expression analy-

sis between in vivo intracellular MTB and extracellular MTB identi-

fied 431 significantly differentially expressed transcripts (log2 fold

change < �1.0 or > 1.0 and multiple hypothesis-corrected

P-value < 0.05, Dataset EV1).

Among the differentially expressed transcripts that code for

annotated proteins (376 genes), 121 were down-regulated and sig-

nificantly enriched (multiple hypothesis-corrected P-value = 0.005),

in the Mycobrowser category (Kapopoulou et al, 2011) of proline–

glutamic acid (PE)/proline–proline–glutamic acid (PPE) family of

proteins. The exact physiological role of the PE and PPE proteins in

MTB is yet to be fully understood, but they are thought to play

important roles in immune evasion (Tiwari et al, 2012). It is inter-

esting that PE and PPE genes were down-regulated in AMs and

might indicate that they are unnecessary within these host cells. In

addition, 255 genes were up-regulated in AMs at 24 h post-infection

and were significantly enriched (P < 0.05) in the Mycobrowser

functional categories: “insertion sequences and phages”, “informa-

tion pathways”, and “lipid metabolism”. Most interesting, many of

the genes whose protein products are associated with “lipid meta-

bolism” are involved in the biosynthesis of mycolic acid. These

up-regulated mycolic acid biosynthesis genes included umaA, pcaA,

desA1, desA2, fadD32, and fabD. In addition, genes of the operon

involved in phthiocerol dimycocerosate (PDIM) biosynthesis were

also up-regulated. The biosynthesis of new cell wall material is an

energetically expensive process and found to be repressed in MTB

upon entry into dormancy (Galagan et al, 2013; Jamet et al, 2015).

This suggests that MTB in AMs 24 h post-infection are not in a dor-

mant state. Instead, the transcriptional response indicates MTB is

actively remodeling the cell wall, perhaps with modifications that

specifically contribute to survival within AMs. Interestingly, the up-

regulated genes, umaA and pcaA, are required for cyclopropane ring

formation in mycolic acids of MTB. Furthermore, desA1 and desA2

(with log2 fold change of 4.0 and 4.7, respectively, within AMs)

encode fatty acid desaturases that introduce double bonds into fatty

acids (Singh et al, 2016). Desaturation is a necessary step prior to

cyclopropanation and other mycolic acid modifications. It is interest-

ing to speculate that conditions within AMs induce desaturation

events, enabling MTB to fine-tune subsequent cyclopropanation and

other modifications of mycolic acids that contribute to cell wall per-

meability and adaptation within these host cells. The significant up-

regulation of mycolic acid remodeling genes following in vivo infec-

tion was interesting and deserved further investigation of their tran-

scriptional control.

Genome-wide expression analysis during in vitro macrophage
infection using Path-seq

Several genome-wide expression studies of MTB challenged with

dormancy-inducing stresses, such as nutrient starvation (Jamet

et al, 2015) and hypoxia (Galagan et al, 2013; McGillivray et al,

2015), have shown that genes involved in mycolic acid biosynthesis

are generally down-regulated. In contrast, we observed up-regula-

tion of mycolate biosynthesis genes in MTB from AMs of infected

mice at 24 h. Therefore, we sought to study the expression of these

mycolic acid modification genes at multiple time points during infec-

tion using the Path-seq method and MTB-infected bone marrow-

derived macrophages (BMDMs). An in vitro infection system was

used due to the large number of mice required for additional time

points during in vivo infection. We isolated murine BMDMs and

infected them with MTB at a MOI of 10. Infected cells were collected

at 2, 8, and 24 h after infection along with extracellular MTB grown

in 7H9 media as control. Total RNA was extracted, depleted of

rRNA, and handled as described above (Fig 1A). All extracellular

MTB samples were processed by Path-seq as well. For the in vitro

infection samples (Appendix Fig S2), we split each sample into

RNA-seq and Path-seq fractions to evaluate the enrichment effi-

ciency and to simultaneously obtain both host and pathogen tran-

scriptomes from the same infection sample. While we did not

perform transcriptome analysis of the host cells in this study, the

raw data are available (GSE116357) along with uninfected BMDM

controls and represents the first duel monitoring of both MTB and

host transcriptomes from the same infection samples. The percent-

age of reads that aligned to MTB was consistent at a 100-fold

ª 2019 The Authors Molecular Systems Biology 15: e8584 | 2019 3 of 19
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increase in the enriched vs non-enriched samples across replicates

and time points (Table 1). With an average of 11 million (M)

mapped reads for both intracellular (average 13.4 M) and extracel-

lular (average 8.8 M) MTB, we obtained >100× coverage and 5,622

unique features (including ncRNA and UTRs). This is further valida-

tion of the Path-seq method to comprehensively study the authentic

intracellular state of a pathogen.

Using the normalized read counts from the intracellular and

extracellular MTB data, we identified two clusters by implement-

ing the R NbClust function (Charrad et al, 2014) on principal com-

ponent analysis output, a dimensionality reduction method. The

two identified clusters are shown in a two-dimensional t-distrib-

uted stochastic neighbor embedding plot (t-SNE, van der Maaten &

Hinton, 2008) plot. Extracellular samples clustered closely

together, distinct from the intracellular samples and according to

their time post-infection (Appendix Fig S3A). Biological replicates

fell into related groups and demonstrated strong correlation in

pairwise comparison of RPKMs (Appendix Fig S3B). Differential

expression of intracellular MTB was calculated relative to extracel-

lular, at each time point using DESeq2. Overall, there were 746,

945, and 412 significant differentially expressed (log2 fold change

< �1.0 or > 1.0 and multiple hypothesis-adjusted P-value < 0.01)

transcripts at the 2, 8, and 24 h post-infection time points, respec-

tively (Dataset EV2). The most up-regulated genes at all time

points included genes such as icl1, Rv1129c, prpD, prpC, and

fadD19. The induced expression of these genes is consistent with

known alterations in lipid degradation during infection, enhanced

activity of the methylcitrate cycle (Munoz-Elias et al, 2006), and

genetic evidence that MTB utilizes cholesterol from the host dur-

ing infection (Pandey & Sassetti, 2008). These carbon-metabolizing

genes were also found to be up-regulated in microarray analysis

of in vitro MTB-infected host cells (Schnappinger et al, 2003; Data

ref: Schnappinger et al, 2003; Rohde et al, 2007; Data ref: Rohde

et al, 2007), along with a significant overlap of other differentially

expressed genes between the datasets (Appendix Table S2). These

data demonstrate that the Path-seq method yielded data consistent

with published transcriptional studies of in vitro infected host

cells. Importantly, the Path-seq method allows for simultaneous

expression profiling of host and pathogen transcripts and

additional transcript features that are not possible in microarray

studies.

desA1 and desA2 are induced early during in vitro macrophage
infection and hypoxia time course

Among the mycolic acid biosynthesis genes, only umaA was up-

regulated at all time points and desA1/desA2 were transiently up-

regulated at 2 h following MTB infection of BMDMs. Similarly,

umaA, desA1, and desA2 were also found to be up-regulated in the

in vitro infection microarray analyses (Schnappinger et al, 2003;

Data ref: Schnappinger et al, 2003; Rohde et al, 2007; Data ref:

Rohde et al, 2007), but none of the other mycolic acid biosynthesis

genes that were up-regulated in vivo. In the in vitro infection using

Path-seq, after 2 h, desA1/desA2 returned to levels similar to extra-

cellular MTB at 8 h and 24 h (Fig 2A). This expression dynamics of

desA1/desA2 during MTB infection of BMDMs was also mirrored in

RNA-seq data of MTB entering and exiting hypoxia over a 5-day

time course (Fig 2B). In this experiment, we used mass flow con-

trollers to regulate the amount of air and nitrogen (N2) gas stream-

ing into cultures of MTB and achieve a gradual depletion of oxygen

over 2 days. The cultures were maintained in hypoxia for 2 days by

streaming only N2 and then reaerated over 1 day by a controlled

increase in air flow. During the 2-day oxygen depletion, the expres-

sion levels of desA1 and desA2 did not change significantly. How-

ever, as soon as the cultures reached complete hypoxia (0%

dissolved oxygen), the expression of the desaturases increased for

~5 h, followed by a dramatic repression after ~30 h of being in

hypoxia. Subsequently, reaeration of the culture returned desA1 and

desA2 to basal expression levels (Fig 2B). Interestingly, umaA was

not significantly differentially expressed across the hypoxia time

course.

Gene expression comparison between in vivo and in vitro
infections

In addition to the mycolic acid biosynthesis gene, we further com-

pared all significantly differentially expressed genes between the

two infection models and found only a small but significant (P-

value < 0.01) subset of common genes (59 genes at 24 h and 137

genes from any in vitro time point, Dataset EV3 and Appendix Fig

S4). Most of the common genes were up-regulated in both models

and included genes significantly enriched in categories related to the

ribosome and response to hypoxia according to MTB annotation in

DAVID (Huang da et al, 2009a,b). Interestingly, both AAA+

ATPases, clpX (Rv2457c), and clpC1 (Rv3596c) that interact with

the ClpP proteolytic core (Neuwald et al, 1999; Raju et al, 2014)

were also significantly up-regulated in both models. Despite these

few similarly expressed genes, the strikingly different gene expres-

sion profiles between the experimental infection models could

reflect heterogeneity in host cells. Huang et al (2018) recently

demonstrated in mice that MTB has lower bacterial stress in AMs

compared to interstitial macrophages (IMs) at 2 weeks post-infec-

tion. The authors theorize that different host macrophage lineages

represent different intracellular environments that are permissive

(AMs) or restrictive (IMs) for MTB growth (Huang et al, 2018). Our

data also point toward differences in the MTB transcriptional state

from macrophages of different lineages.

Table 1. Genome mapping statistics from Path-seq and RNA-seq from
in vitro infection of MTB-infected BMDMs.

Fraction of MTB reads of all aligned
reads (%)

Path-seq RNA-seq

Intracellular 2 h: a 77.0 0.73

Intracellular 2 h: b 71.1 0.53

Intracellular 2 h: c 88.5 0.65

Intracellular 8 h: a 47.7 0.54

Intracellular 8 h: b 87.5 0.66

Intracellular 8 h: c 82.8 0.38

Intracellular 24 h: a 97.4 3.97

Intracellular 24 h: b 75.5 1.88

Intracellular 24 h: c 97.5 3.10
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Systems-level comparison of active MTB regulatory networks
illustrates differences between infection models

Given the transcriptome differences between the infection models,

we employed a computational framework to characterize, at sys-

tems scale, the transcriptional differences between the extracellular

and intracellular states for each model. There are numerous meth-

ods for identifying the key transcriptional networks from different

environments (Balazsi et al, 2008; Brynildsen & Liao, 2009; Cahan

et al, 2014). Based on one such approach, NetSurgeon (Michael

et al, 2016), we evaluated the role of each TF in the observed gene

expression changes given a signed transcriptional network. We con-

structed a transcriptional network based on ChIP-seq data from

overexpression of 178 of 214 TFs in MTB (Minch et al, 2014; Data

ref: Minch et al, 2015). Activating and repressing influences of TFs

were inferred from consequence of TF overexpression on down-

stream genes (Rustad et al, 2014; Data ref: Rustad et al, 2014).

Using a data-driven transcriptional network of 4,635 interactions,

each TF–target gene interaction was weighted according to the mul-

tiple hypothesis-adjusted P-value from differential expression analy-

sis between intracellular and extracellular conditions. We calculated

a relative score for each TF in conditions simulating deletion or

overexpression of the TF. These simulations prioritized TF activities

(decreased or increased) yielding a transcriptome most similar to

the infected state, compared to the control (see Materials and Meth-

ods and summary schematic in Fig 3A). We performed this analysis

for each time point and infection model to identify highly ranked

TFs (Fig 3B).

From the in vitro macrophage infection, many of the TFs had dis-

tinct temporal activity, while others were highly ranked across all

time points (Fig 3B). These sustained regulons include DosR, which

is known to contain a set of ~50 genes that are induced in response

to multiple signals including hypoxia, nitrosative stress, and carbon

monoxide (Park et al, 2003; Kendall et al, 2004; Roberts et al, 2004;

Kumar et al, 2008). While DosR regulon induction is typically asso-

ciated with hypoxic conditions and reactive nitrogen intermediates

(RNIs), we observed activation as early as 2 h post-infection.

Encouragingly, this 2 h induction was also found in the microarray

study of MTB-infected macrophages, where high DosR regulon

expression was sustained until a striking down-regulation at Day 8

(Rohde et al, 2012). This indicates that the known cues of this regu-

latory network are present almost immediately during in vitro infec-

tion. In addition to DosR, two other TFs had high activity across all

time points, Rv0681 (Fig 3C) and Rv0691c. Interestingly, both are

TetR family transcriptional regulators and conserved across all

mycobacterial genomes (Balhana et al, 2015), including the drasti-

cally reduced Mycobacterium leprae. The function of these transcrip-

tional networks is unknown, but suggests their activity is important

for survival in both environmental and intracellular niches.

Among the TFs with decreased activity, KstR and KstR2 were

found across all time points of the in vitro infection and are known

to repress genes required for cholesterol utilization (Kendall et al,

2010). Our analysis indicates that reduction of their repressive activ-

ity, and increased expression of their target genes, is important for

driving the in vitro intracellular transcriptional state. This is consis-

tent with the highly expressed cholesterol utilization and methyl

citrate cycle genes that we and others have observed (Schnappinger

et al, 2003; Rohde et al, 2007; Homolka et al, 2010). Moreover, this

emphasizes the importance of altered carbon metabolism and uti-

lization of host-derived nutrients as key to MTB in vitro intracellular

adaptation. Another repressor, Zur (previously FurB), had decreased

activity across all time points (Fig 3D). Zur down-regulates genes

involved in zinc transport (Maciag et al, 2007). During MTB infec-

tion, macrophages overload the phagosome with copper and zinc as

a strategy to poison the pathogen (Neyrolles et al, 2015). However,

through multi-faceted resistance mechanisms we do not fully appre-

ciate, MTB is able to protect itself against metal toxicity. Our analy-

sis proposes that reduced Zur activity results in increased
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infected BMDMs and over a hypoxia time course.

A Path-seq profiles of desA1 and desA2 in MTB-infected BMDMs. Error bars
show the standard deviation from three biological samples. Representative
results from two experiments are presented.
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expression of zinc transport genes which could help with regulating

zinc levels in MTB during in vitro macrophage infection. Interest-

ingly, other regulators of metal content (TFs, uptake and export)

were recently found to be required for in vitro intracellular growth

by high-content imaging of an MTB transposon mutant library

(Barczak et al, 2017). Leveraging our Path-seq data, we developed a

systems-level approach that recapitulates known in vitro intracellu-

lar regulatory networks and prioritizes others for further experimen-

tal testing.

We also applied the same analysis to the in vivo expression data

(using differentially expressed genes in Dataset EV1) to identify

transcriptional networks involved in MTBs response within AMs.

Interestingly, we observed very few networks that were active in

both infection models. Only Rv0691c was highly ranked at 24 h

from both AMs and BMDMs (Fig 3E). In our regulatory network,

Rv0691c has ~50 target genes, a subset of which are up- and down-

regulated during in vitro and in vivo infection. The genes in the

regulon do not categorize into a certain pathway, but our unbiased

analysis suggests the Rv0691c regulon deserves further study for its

role in establishing MTB infection both in vitro and in vivo. Overall,

there were far fewer active networks identified in vivo, compared to

the in vitro infection. While the type of differentially expressed

genes (i.e., genes not belonging to regulons) could contribute to

such differences, we do not see that being the case. Therefore, it is

appealing to speculate that the more permissive environment within

AMs or a greater heterogeneity of infection from the in vivo model

could contribute to the differences in the number of active regula-

tory networks identified by NetSurgeon.

Identification of EGRIN module relevant to infection and desA1/
desA2 transcriptional regulator, Rv0472c

Our systems analysis revealed novel and infection-specific regula-

tory networks. However, none of the identified regulons included

the mycolic acid biosynthesis genes up-regulated in vivo, and partic-

ularly umaA and desA1/desA2 that were up-regulated in both infec-

tion models. One plausible explanation could be the regulon size

threshold that was implemented to reduce false positives (TFs with

at least five targets were considered in this analysis). Therefore, we

used an orthogonal network approach to discover regulatory mecha-

nisms controlling the expression of these genes that could be impor-

tant for mycolic acid remodeling during infection. Specifically, we

used the environment and gene regulatory influence network

(EGRIN) model of MTB that was previously published and demon-

strated to accurately predict regulatory interactions through valida-

tion with the DNA binding sites and transcriptional targets from

overexpressing > 150 MTB transcription factors (TFs; Peterson et al,

2015; Turkarslan et al, 2015). The full description of the algorithms

used to construct the EGRIN model is beyond the scope of this

work; readers are encouraged to refer to the original paper for more

detail (Reiss et al, 2006). Briefly, the EGRIN model was constructed

through semi-supervised biclustering of a compendium of 2,325

transcriptomes assayed during MTB response to diverse environ-

mental challenges, guided by biologically informative priors and

de novo cis-regulatory GRE detection for module (also referred to as

bicluster) assignment. Overall, the EGRIN model is sufficiently pre-

dictive to formulate hypotheses of MTB regulatory interactions that
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Figure 3. Systems approach to identify active intracellular regulatory networks.

A Schematic of network analysis to identify TFs with activity (increased or decreased) in controlling the transcriptional state of MTB during infection of host cells.
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B Heatmap of TFs with decreased (purple) or increased (green) activity at specific time points during in vitro or in vivo infection.
C Rv0681 regulon genes differentially expressed in vitro and the evidence for predicted high Rv0681 activity (induced expression of target genes).
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respond to various environmental conditions, including new condi-

tions not represented in the gene expression compendium such as

in vivo infection. Using the EGRIN model, we identified significant

enrichment (multiple hypothesis-corrected P-value = 4.9 × 10�9) of

the in vivo up-regulated mycolic acid biosynthesis genes in bicluster

276 and with predicted regulation by the TF, Rv0472c (Fig 4A).

Bicluster 276 contains the desaturases, desA1/desA2, and PDIM syn-

thases, ppsD/E, all of which were up-regulated in vivo. Furthermore,

bicluster 276 contains the toxin–antitoxin system, vapB/C47, which

was also significantly up-regulated in vivo (with log2 fold change of

3.5 and 3.0, respectively). The PDIM biosynthesis and transport

genes, fad26, drrABC, and papA5, are additional gene members of

module 276. Interestingly, all of the PDIM-related genes of module

276 genes (ppsD/E, drrABC, papA5) were identified in a high-

content imaging analysis of bacterial mutants during macrophage

infection (Barczak et al, 2017). More specifically, they found

mutants of these genes impaired intracellular survival and reduced

type I interferon (IFN) response in host cells (Barczak et al, 2017).

Although the detrimental versus beneficial relevance of type I IFN in

MTB infection remains a matter of active debate, growing evidence

suggests type I IFN promotes bacterial expansion and pathogenesis

within host cells (Moreira-Teixeira et al, 2018). As such, we presume

module 276 genes are up-regulated upon in vivo infection to collec-

tively alter cell wall composition and modulate the immune system,

thereby promoting MTB survival and proliferation within AMs.

The EGRIN model predicted regulation of module 276 by a TetR-

type TF, Rv0472c, with homologs across all mycobacteria, including

M. leprae (Balhana et al, 2015). When overexpressed in MTB,

Rv0472c led to significant repression of 15 genes, but only desA1

and desA2 had significant binding of Rv0472c in their promoter

region from ChIP-seq analysis (Minch et al, 2014; Data ref: Minch

et al, 2015). Given the conservation of Rv0472c across mycobacte-

ria, we hypothesized that overexpression of the MSM homolog

should also repress the desaturases in MSM (Fig 4A). We cloned

MSMEG_0916 into an anhydrotetracycline (ATc)-inducible Gateway

shuttle vector as previously described for MTB (Galagan et al, 2013;

Data ref: Minch et al, 2015) and transformed into MSM. We induced

expression of MSMEG_0916 for 4 h and harvested chromatin sam-

ples for ChIP-seq as well as RNA for transcriptional profiling by

RNA-seq. Overexpression of MSMEG_0916 resulted in nine signifi-

cant ChIP peaks (P-value < 0.01) with a peak score higher than 0.7,

as analyzed by DuffyNGS ChIP peak calling method (see Methods).

Among these were peaks located in the promoter of the MSM desA1

and desA2 (Fig 4B). Additionally, MSMEG_0916 overexpression

resulted in significant repression of desA1 and desA2, with a log2

fold change of �1.32 and �1.72, respectively, compared to unin-

duced (Fig 4C). The DNA consensus motifs, generated using MEME

and DNA binding data from ChIP-seq, also had significant alignment

between Rv0472c and MSMEG_0916 (Appendix Fig S5).

This analysis demonstrates the utility of EGRIN to identify the

regulator of genes relevant to infection. Yet, the Rv0472c and

MSMEG_0916 overexpression data support the direct regulation of

only desA1/desA2, among bicluster 276 genes. It is worth noting

that EGRIN biclusters can be overlapping sets of co-regulated genes

that, in some cases, group together genes from different regulons

and, in other cases, subdivide genes of the same regulon, or even

the same operon. This conditional modularity captures complex

gene regulatory programs for combinatorial control for thousands of

genes by few hundred TFs. While a significant number of bicluster

276 genes are up-regulated during in vivo infection, not all of the

genes are necessarily regulated by the same TF. As such, bicluster

276 represents a coordination of regulatory mechanisms that bring

together functionally related genes. These genes, involved in biosyn-

thesis/transport of PDIM and desaturation of mycolic acids, act

together to alter cell wall composition, thereby affecting cell wall

permeability and host responses during in vivo infection.

Inducible overexpression of MSMEG_0916 or Rv0472c causes loss
of mycobacterial viability and reduction in mycolate biosynthesis

Motivated by our identification of Rv0472c and MSMEG_0916 as

controlling the expression of desA1 and desA2, we hypothesized

that overexpression-mediated repression of the desaturases should

have phenotypes similar to the desA1 knockout that was previously

characterized (Singh et al, 2016). We tested the viability of the TF

overexpression strains by spotting serial 10-fold dilutions of cultures

on agar plates with or without ATc. Plates with MTB and Rv0472c

overexpression strain were incubated for 3 weeks, and growth pat-

terns indicated that the presence of ATc resulted in a 4-log fold

reduction in CFU counts (Fig 5A). In comparison, plates containing

the parental MTB strain showed no change in CFUs with the pres-

ence or absence of ATc (Fig 5A). Similar experiments were done in

Mycobacterium bovis BCG (BCG) and MSM with Rv0472c and

MSMEG_0916 overexpression, respectively. Overexpression resulted

in 3-log viability reduction in BCG (Appendix Fig S6A) and 2-log

viability reduction in MSM (Appendix Fig S6B). We also observed

very limited growth in broth culture when MSMEG_0916 was

induced with ATc (Appendix Fig S7).

Overexpression of the conserved TF resulted in a loss of

mycobacterial viability, due to repression of desA1 and desA2 and

ensuing decrease in mycolic acid biosynthesis. Conditional deple-

tion of DesA1 in MSM leads to an intermediate decrease in desatura-

tion prior to complete loss of mycolic acids (Singh et al, 2016). To

test for a decrease in mycolic acid biosynthesis, we labeled cultures

of MSMEG_0916 overexpression strain with 14C acetic acid following

growth in the presence or absence of ATc. Thin layer chromatogra-

phy (TLC) analysis of apolar lipids demonstrated that overexpres-

sion of MSMEG_0916 reduced the levels of trehalose dimycolates

(TDMs; Appendix Fig S8). We also analyzed methyl esters of

mycolic acids (MAMEs) obtained from apolar lipids using 2D-argen-

tation TLC analysis, designed to separate each subclass of mycolic

acid based on saturation levels. MAME analysis revealed an accu-

mulation of products that migrate identically to our previous obser-

vation with DesA1 depletion (Singh et al, 2016) (Fig 5B) and most

likely correspond to mono-unsaturated mycolates. Similarly, 1D

TLC separation of fatty acid methyl esters (FAMEs) and MAMEs

from apolar lipids confirmed the general decrease in MAMEs and an

accumulation of FAMEs when Rv0472c is overexpressed in BCG

(Fig 5C and densitometric analysis in Appendix Fig S9). This charac-

teristic profile of total MAME inhibition and FAME accumulation

mirrors what is seen with fatty acid synthase (FAS)-II inhibitors,

such as isoniazid (Vilcheze et al, 2000) and thiolactomycin (Kremer

et al, 2000), and confirms the involvement of DesA1 and DesA2 in

the biosynthesis of mycolic acids and more specifically with the

FAS-II system. Interestingly, in BCG there was no accumulation of

mono-unsaturated mycolates as those found in MSM upon detailed
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desA1 and desA2 by Rv0472c in both MTB and MSM. Graphic representation of linkages between module 276 genes, regulatory influences, functional associations, cell
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B Plot of read pile-ups from MSM with inducible overexpression of MSMEG_0916 shows ChIP binding in the promoters of desA1 and desA2.
C Boxplots representing RPKM values from RNA-seq of MSM with inducible overexpression of MSMEG_0916. Significant log2 fold change (FC) between uninduced (�ATc)

and induced (+ATc) samples for MSMEG_0916 (log2 FC = 4.99), desA1 (log2 FC = �1.32), and desA2 (log2 FC = �1.8) with multiple hypothesis-adjusted P-
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The boxes show the median and first/third quartiles of the log2 FC values; the whiskers extend to the smallest/largest values that are no further than 1.5 times the inter-
quartile range.
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analysis of MAMEs by 2D-argentation TLC (Appendix Fig S10A and

B). This could be due to key differences in mycolate subclasses

between MSM and MTB, particularly cyclopropane ring formation,

which is abundant in MTB but not MSM and requires a precursory

desaturation event.

Discussion

During MTB infection, the bacterium utilizes various mechanisms to

ensure its own survival and persistence in the host. The intracellular

context is paramount for identifying such mechanisms via

observation and interpretation of gene expression changes. While

hypoxia, low pH, and nutritional stress are used as proxies, they do

not reproduce the spatiotemporal complexity of host-induced stress.

As such, there is no substitute for understanding the authentic intra-

cellular context other than transcriptionally profiling pathogens

directly from infected cells and tissues. The development of Path-

seq has enabled such studies and confirmed mycolic acid biosynthe-

sis as a well-known virulence factor (Barry et al, 1998). Mycolates,

essential for mycobacterial cell wall rigidity, not only make up a

lipid-rich barrier in the mycobacterial cell envelope, they also act as

potent immunomodulators, driving the pathogenesis of MTB, pri-

marily as part of the cord factor (TDM; Marrakchi et al, 2014;
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A Serial 10-fold dilutions of MTB H37Rv wild type (wt) and MTB with inducible overexpression of Rv0472c were spotted on 7H10 agar plates with or without ATc.
B Argentation TLC of 14C-labeled methyl esters of mycolic acids (MAMEs) obtained from apolar lipids and delipidated cell wall fractions of MSM wt and MSM with

inducible overexpression of MSMEG_0916. The a, aʹ, epoxy (e), and cyclopropanated a- (X1) MAMEs species are labeled. Faster-migrating species that co-migrated with
a-MAMEs and accumulate with induced MSMEG_0916 overexpression are indicated as X2 and X3.

C BCG wt and BCG with inducible overexpression of Rv0472c cultures, labeled with 14C-acetate, were induced (+ATc) or uninduced (�ATc) for 4 h or 8 h. The total
FAMEs and MAMEs were extracted and analyzed by autoradiography–TLC using equal counts (15,000 cpm) for each lane.
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Nataraj et al, 2015). Here, we present evidence that mycolate

biosynthesis is tightly regulated in response to the intracellular envi-

ronment. Using our novel Path-seq method, we observed signifi-

cantly induced expression of mycolic acid biosynthesis genes,

umaA, pcaA, desA1, desA2, fadD32, and fabD, 24 h after MTB

infection of mice. Using multiple systems-level approaches to under-

stand the regulatory control of these virulence genes, we validated

that desA1 and desA2 are regulated by Rv0472c (MSMEG_0916) and

that Rv0472c-mediated repression leads to reduced mycolate biosyn-

thesis and loss of mycobacterial viability. As DesA1 and DesA2 have

been shown to be involved in mycolic acid biosynthesis via desatu-

ration of the merochain, we have therefore named their transcrip-

tional regulatory protein MadR (for mycolic acid desaturase

regulator).

Not much is known about the regulation of mycolic acid biosyn-

thesis apart from two transcription factors shown to regulate distinct

operons, both containing genes encoding core FAS-II proteins

(Salzman et al, 2010; Jamet et al, 2015). Studying the regulatory

alterations to mycolate subclasses remains an even greater chal-

lenge, especially during infection. Our studies show that MadR is

involved in the in vivo and in vitro regulation of desA1 and desA2,

coding for enzymes involved in mycolic acid desaturation (Singh

et al, 2016). The introduction of double bonds in the mycolate

merochain precedes cyclopropanation and other merochain modifi-

cations that are critical for pathogenic mycobacteria (Glickman

et al, 2000; Rao et al, 2005, 2006; Barkan et al, 2012). Loss of

cyclopropanation can lead to hyperinflammatory responses and

attenuated infection. As the introduction of double bonds in the

merochain is required for subsequent cyclopropanation and other

merochain modifications, DesA1 and DesA2 could be drivers of

both mycolic acid biosynthesis and composition during infection.

In other words, MadR-driven regulation not only leads to lower

mycolate levels during dormancy, a state when new cell wall

material is not synthesized, but also altered cyclopropane ring for-

mation by varying desaturation levels, thus affecting virulence and

persistence.

Surprisingly, we observed early (2 h post-infection) induced

expression of desA1 and desA2 during MTB infection of BMDMs,

followed by return to basal levels by 8 h. This is consistent with the

reported increased production of TDM within the first 30 min after

in vitro phagocytosis (Fischer et al, 2001) and suggests that the

desaturases play a role in cell wall modifications that occur in

response to intracellular cues. However, the presence of these intra-

cellular cues appears to be different in AMs from infected mice. The

overall disparity in the transcriptional profile of MTB from BMDMs

and AMs is both intriguing and disturbing. The active MTB net-

works we identified from BMDMs imply the presence of early and

sustained bacterial stress. However, the induction of these stress-

related networks is absent in the transcriptomes of MTB from AMs,

suggesting the bacteria are not experiencing the same type or

amount of stimuli in AMs. These data support recent observations

using fluorescent MTB reporter strains, demonstrating that bacilli in

AMs exhibit lower stress and higher bacterial replication than those

in interstitial macrophages (Huang et al, 2018). Similarly, we
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Figure 6. Model of MadR regulation of mycolic acid desaturases.

Under normal growth conditions, MadR exists in equilibrium between the free and DNA-bound forms, and a basal level of desA1 and desA2 expression is maintained. DesA1
and DesA2 act with other enzymes of the fatty acid synthase-II (FAS-II) complex to produce mycolic acids for new cell wall. Infection of macrophages and early stress cues
shifts the equilibrium toward the free form of MadR, and the repression of desA1 and desA2 is released. The desaturase protein levels increase, introducing double bonds that
allow cyclopropanation and other modifications to alter the cell wall. These changes enable the bacteria to withstand intracellular stresses and establish infection. As
infection continues and stress is sustained, MadR binds tightly to the promoter of desA1 and desA2, leading to stringent repression of the desaturases. MadR-mediated
repression of desA1 and desA2 leads to irregular fatty acids of medium length and the pausing of mycolic acid biosynthesis to enter into dormancy. The DNA-bound form of
MadR is shown in complex with a yet unknown co-factor that leads to repression of the desaturases.
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hypothesize that MTB responds divergently to macrophages of dif-

ferent lineages and that AMs present fewer stresses and possibly a

more permissive environment compared to BMDMs. It is also worth

mentioning that the data raise some concerns with respect to the

use of BMDMs as an appropriate infection model.

Our data lead us to propose a model for MadR regulation of

desA1 and desA2 transcription as summarized in Fig 6. Under nor-

mal growth conditions, MadR exists in equilibrium between the free

and DNA-bound forms, thus maintaining basal levels of desA1 and

desA2 transcripts. Upon macrophage infection and early hypoxia,

equilibrium favors unbound MadR which derepresses desA1 and

desA2 transcription and increases mRNA levels. As infection pro-

gresses and reaches later stages of hypoxia, MadR has increased

binding affinity in the promoters of desA1 and desA2 and represses

their transcription to below basal levels. Ultimately, the MadR regu-

latory system enables mycobacteria to efficiently alter mycolate

biosynthesis and composition in response to environmental signals.

We suspect the early response to infection (desA1 and desA2

up-regulation) increases desaturation events and allows MTB to

fine-tune cyclopropanation and other merochain modifications that

contribute to the establishment of infection. However, mycolate

biosynthesis is energetically expensive and MadR-mediated repres-

sion occurs in later stages of infection. The reduction in mycolate

biosynthesis allows MTB to enter dormancy and facilitates long-

term persistence.

The question remains how MadR is able to differentially bind to

DNA in response to environmental changes. In mycobacteria, other

TFs regulating mycolate biosynthesis are modulated by long-chain

acyl-CoAs (Biswas et al, 2013; Mondino et al, 2013; Tsai et al,

2017), proposing a role for these molecules in the modulation of

MadR as well. Similarly, a MadR homolog in Pseudomonas aerugi-

nosa, DesT, was shown to have enhanced DNA binding in the pres-

ence of unsaturated acyl-CoAs (Zhang et al, 2007). These studies

support the notion that a select acyl-CoA ligand may control MadR

DNA binding affinity (as shown in Fig 6) and thus the expression of

desA1 and desA2.

The characterization of the MadR regulon provides valuable

insight for understanding the evolution of MTB. While we have

shown the regulation by MadR is conserved from MSM to MTB,

our results also suggest the fatty acid desaturation events and

resulting mycolate subclasses and surface lipids have evolved,

specializing for bacterial survival in the host environment. These

findings propose mycobacterial evolution from saprophyte to

pathogen has occurred through the adaptation of ancestral genes

and regulatory networks to function in the host environment. Ulti-

mately, this study demonstrates the in vivo significance of the

desaturases and their regulation by MadR. We believe the Path-seq

method, described and employed here, offers a sensitive and tract-

able approach to elucidate the molecular mechanisms used by

MTB during host infection, potentially at the single-cell level. Our

detailed characterization of one such mechanism has revealed that

modulation of MadR activity can affect cell wall composition as

well as mycobacterial viability. Accordingly, we have established

Path-seq as a powerful tool for uncovering the minimally studied

in vivo biology of this pathogen and revealed the essentiality of

MadR encoded program for cell wall remodeling and biosynthesis.

As such, we present MadR as a new and important antitubercular

target.

Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or Source Identifier or Catalog Number

Experimental Models

H37Rv (M. tuberculosis) D. Sherman lab N/A

mc2155 (M. smegmatis) A. Bhatt lab N/A

BCG Pasteur (M. bovis) A. Bhatt lab N/A

C57BL/6J (M. musculus) Jackson Lab B6.129P2Gpr37tm1Dgen/J

Recombinant DNA

pDTCF-Msmeg0916 (M. smegmatis) This study N/A

pDTCF-Rv0472c (M. tuberculosis) D. Sherman lab, Minch et al (Data ref: Minch et al, 2015) N/A

pMV306-eGFP-Zeo L. Kremer lab, Bernut et al (2016) N/A

Antibodies

M2 anti-FLAG Sigma F1804

Rat anti-mouse CD16/32 (clone 2.4G2) BD Pharmingen 553142

Mouse anti-Siglec F (clone E50-2440) BD Pharmingen 552125

Mouse anti-CD11b (clone M1/70) BioLegend 101201

Mouse anti-CD64 (clone X54-5/7.1) BioLegend 139321

Mouse anti-CD45.2 (clone 104) BioLegend 109815

Mouse anti-CD3 (clone 17A2) eBioscience 14-0032-81
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Reagents and Tools table (continued)

Reagent/Resource Reference or Source Identifier or Catalog Number

Mouse anti-CD19 (clone 1D3) eBioscience 11-0193-81

Oligonucleotides and sequence-based reagents

Cloning primers This study see Methods and Protocols

Chemicals, enzymes and other reagents

Zombie Violet dye BioLegend 423113

TRIzol Invitrogen 15596026

RPMI Medium (1640) Gibco 11875093

Anhydrotetracyline Sigma-Aldrich 37919

Hygromycin B Invitrogen 10687010

Protease inhibitor cocktail Sigma-Aldrich P2714

Middlebrook OADC enrichment BD Difco 212351

Middlebrook ADC enrichment BD Difco 212352

Middlebrook 7H10 agar BD Difco 262710

Middlebrook 7H9 broth BD Difco 271310

Petroleum Ether 60–80°C Fisher Chemicals P/1480/17

Chloroform, 99.8+% Fisher Chemicals C/4960/17

Methanol, AR Fisher Chemicals M/4000/17

Sodium chloride Fisher Chemicals S/3160/65

Tetrabutylammonium hydroxide solution 40 wt.
% in H2O

Sigma-Aldrich 178780

Dichloromethane, 99+% Fisher Chemicals D/1850/17

Iodomethane (stabilised with silver) for synthesis Merck 806064

Diethyl ether, AR Fisher Chemicals D/2450/17

TLC Silicagel 60 F₂₅₄ Merck 1055540001

Acetone, AR Fisher Chemicals A/0600/17

Silver nitrate, Ultrapure Grade, 99.5% Acros Organics 419361000

Acetic Acid, Sodium Salt, [1-14C]-, 1mCi (37MBq) PerkinElmer NEC084H001MC

Kodak® BioMax® MR film Sigma-Aldrich Z353949-50EA

Software

DuffyNGS Vignali et al (2011) http://networks.systemsbiology.net/mtb/

NetSurgeon Michael et al (2016) http://mblab.wustl.edu/software.html

DESeq2 Love et al (2014) https://github.com/mikelove/DESeq2

Adobe Photoshop CC 2015 https://www.adobe.com

Other

Direct-zol RNA MicroPrep kit Zymol Research R2060

Dynabeads M-270 Streptavidin Invitrogen 65306

Lysing Matrix B tubes MP Biomedicals MP116911050

SureSelectXT strand-specific RNA kit Agilent 5190-6410

SureSelectXT target enrichment kit Agilent 5190-4393

Probe library M_tub_h37rv_ASM19595v2_32_1 Agilent This study, ELID number 3037441

TruSeq stranded mRNA library prep kit Illumina RS-122-2103

Ribo-Zero magentic kit bacteria Illumina MRZB12424

Ribo-Zero magentic kit epidemiology Illumina MRZE724

NextSeq 500/550 High output kit Illumina FC-404-2002

SMARTer ThruPLEX DNA-seq kit Takara R400523

Illumina NextSeq 500 Illumina
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Methods and Protocols

Culturing conditions
Mycobacteria strains were cultured in Middlebrook 7H9 with the

ADC supplement (Difco), 0.05% Tween-80 at 37°C under aerobic

conditions with constant agitation. Strains containing the anhy-

drotetracycline (ATc)-inducible expression vector were grown

with the addition of 50 lg/ml hygromycin B to maintain the

plasmid. Growth was monitored by OD600 and colony-forming

units (CFUs). For experiments featuring madR overexpression

strains, overexpression was induced for the approximate duration

of one cell doubling (18 h for MTB and BCG, 4 h for MSM)

using an ATc concentration of 100 ng/ml culture. Wild-type and

overexpression strain cultures were grown into mid-log phase.

For assessing growth on agar plates, broth cultures were

adjusted to OD600 of 0.5, and serial dilutions were spotted on

7H10 containing 0.5% (v/v) glycerol and 10% (v/v) OADC

plates, with or without 100 ng/ml ATc. In the case of the over-

expression strain, 50 ng/ml hygromycin was added to the solid

medium. For growth in broth, MSM mid-logarithmic phase cul-

tures containing the integrative vector pMV306-eGFP-Zeo (Bernut

et al, 2016) were inoculated in an initial OD600 0.05 in 200 ll
of 7H9 supplement with 0.2% (v/v) glycerol, 0.05% (v/v)

Tween-80, and 10% (v/v) OADC with or without 100 ng/ml

ATc in sealed 96-well Costar 3603 black-sided clear-bottomed

plate incubated at 37°C. Fluorescence was acquired every 30 min

for 30 h at 37°C, in a PHERAstar FS microtiter plate reader

(BMG Labtech), using 485 nm and 520 nm as excitation and

emission wavelengths, respectively. When growing BCG or MSM

for lipid extraction, cultures were cultured up to OD600 0.5.

Then, they were induced with 100 ng/ml ATc (Sigma-Aldrich)

final concentration and labeled with acetic acid [1–14C] 1 mCi/

ml (PerkinElmer), if hot lipid analysis was going to be per-

formed. MSM samples were collected the following day, while

BCG cultures at 4 and 8 hours post-induction.

Strains
To investigate the growth properties of MadR overexpression, we

used strains containing an ATc- inducible expression vector of the

gene, as described previously (Galagan et al, 2013; Jaini et al,

2014; Rustad et al, 2014; Data ref: Minch et al, 2015). The pDTCF-

Rv0472c (kind gift of David Sherman) was transformed into M. bo-

vis BCG and M. tuberculosis H37Rv for viability and mycolic acid

characterization. Mycobacterium tuberculosis H37Rv (kind gift of

David Sherman) was also used for Path-seq experiments. For

MadR overexpression in M. smegmatis (MSMEG_0916), we created

entry clones through PCR amplification of the gene template from

mc2155 gDNA, adding the necessary Gateway recombination

sequences to the PCR product, as described in Minch et al (Data

ref: Minch et al, 2015). The primers used for the Gateway entry

cloning pDONR221 vector are 50-GGGGACAAGTTTGTACAAAA
AAGCAGGCTCTGTGGCACAGCAGACTCCACCG-30 (forward) and

50-GGGGACCACTTTGTACAAGAAAGCTGGGTCGTCAAGCAGGTGC
CGCGGCGG-30 (reverse). We inserted the gene into the same

E. coli-mycobacterial episomal shuttle vector (pDTCF) modified

as described in Minch et al (Data ref: Minch et al 2015). The

pDTCF-MSMEG0916 plasmid was transformed into M. smegmatis

mc2155.

Mice
C57BL/6 mice were purchased from the Jackson Laboratory. All

mice were housed and bred under specific pathogen-free conditions

at Seattle Children’s Research Institute (SCRI). All experimental pro-

tocols involving animals were approved by the Institutional Animal

Care and Use Committee of (SCRI).

Aerosol infection
A mid-log-phase stock of MTB H37Rv was used to infect mice in

an aerosol infection chamber (Glas-Col). Bacterial load in the

lungs was determined by plating serial dilutions from homogenized

lungs.

Cell isolation, analysis, and sorting
1 Bronchoalveolar lavage was performed by first exposing the tra-

chea of euthanized mice.

2 The exposed trachea was punctured using Vannas Micro Scissors

(VWR), and 1 ml PBS was injected using a 20G-1” IV catheter

(McKesson) connected to a 1-ml syringe.

3 The PBS was flushed into the lung and aspirated three times, and

the recovered fluid was placed in a 15-ml tube on ice.

4 The 1 ml PBS wash was then repeated three additional times for

a total of 4 ml recovered fluid.

5 Cells were filtered, spun down, and resuspended in a 96-well

plate for antibody staining.

6 Cells were suspended in 1X PBS (pH 7.4) containing 0.01% NaN3

and 1% fetal bovine serum (i.e., FACS buffer).

Fc receptors were blocked with anti-CD16/32 (2.4G2, BD

Pharmingen). Cell viability was assessed using Zombie Violet dye

(BioLegend). Surface staining included antibodies specific for

murine Siglec F (E50-2440, BD Pharmingen), CD11b (M1/70, BioLe-

gend), CD64 (X54-5/7.1, BioLegend), CD45 (104, BioLegend), CD3

(17A2, eBiosciences), and CD19 (1D3, eBiosciences). Cell sorting

was performed on a FACSAria (BD Biosciences). Cells were col-

lected in complete media, spun down, resuspended in TRIzol, and

frozen at �80° overnight prior to RNA isolation.

BMDM infection
BMDMs were isolated from C57BL/6J mice and cultured in RPMI

(RPMI containing 10% (v/v) FBS and 2 mM L-glutamine) with

recombinant human CSF-1 (50 ng/ml) for 6 days and then

replated. BMDMs were infected on Day 7 with MTB H37Rv strain

(MOI 10), followed by washing 3× with RPMI at 2 h post-infection,

and fresh media was added. BMDMs were lysed with TRIzol

(Invitrogen), and total RNA was isolated from mixed host–

pathogen sample. The same MTB H37Rv cultures used for BMDM

infection were also diluted to starting OD600 = 0.1 and grown in

7H9.

Hypoxia time course
An Oxygen Sensor Spot (PreSens, Regensburg, Germany) was

adhered within a 1-l disposable spinner flask with two side arms

(Corning, Corning, NY). A velcro belt with a screw-on port for

the fiber optic cable was wrapped around the flask. A gas line

input was fastened on one arm of the flask, and a Luer-Lock/

filter sampling port was connected to the other arm. Air and N2

gas lines were run into the Biological Safety Laboratory and con-

nected to gas-specific mass flow controllers (Alicat, Tucson, AZ),
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whose outputs were connected downstream through a Y-

connector that led into an incubator. Three separate flasks, all

prepared as described above, were placed onto a stir plate inside

an incubator at 37°C. The mixed gas line was split via addi-

tional Y-connectors, streamed through 0.2-lm filters, and

attached to the gas line inputs of each flask. Media was incu-

bated overnight and checked for contamination before inoculated

with MTB.

The mass flow controllers and oxygen sensor were linked to a

computer and remotely controlled and monitored in real time. After

inoculation of 700 ml 7H9 media with MTB H37Rv at starting

OD600 of 0.01, we programmed the mass flow controllers to achieve

a changing gas mixture gradient, which allowed us creating a steady

2-day depletion, followed by 2 days of sustained hypoxia, and reaer-

ation by flowing pure air into the headspace of the vessels and

increasing the speed of the stir bars in each vessel. Samples were

collected by attaching a Luer-Lock syringe to the sampling port.

Samples were centrifuged at high speed for 5 min, supernatant was

discarded, and cell pellet was immediately flash frozen in liquid

nitrogen.

RNA isolation
Cell pellets in TRIzol were transferred to a tube containing Lysing

Matrix B (MP Biomedicals) and vigorously shaken at max speed for

30 s in a FastPrep 120 Homogenizer (QBiogene) three times. This

mixture was centrifuged at max speed for 1 min, and the super-

natant was transferred to a fresh tube. RNA from extracellular MTB

samples, BMDM infection, hypoxia time course, and madR overex-

pression was isolated using the Direct-zol RNA MicroPrep Kit

(Zymol Research) according to manufacturer’s instruction with on-

column DNase treatment.

RNA from mice infection was isolated by the following method:

• 200 ll chloroform was added to 1 ml of TRIzol.

• Samples were inverted and incubated for 2–3 min, and the upper

aqueous phase was collected.

• A second chloroform extraction was done, followed by addition of

1 ll glycogen and 500 ll isopropanol.

• Samples were incubated with isopropanol for 10 m at room tem-

perature and centrifuged, and supernatant was discarded.

• Pellet was washed with 1 ml 70% ethanol twice.

• All ethanol was removed, the pellet dried (15 m), and resus-

pended in 12 ll RNase-free water.

For all RNA samples, total RNA yield was quantified by

NanoDrop (Thermo Scientific) and quality was analyzed in a

2100 Bioanalyzer system (Agilent Technologies). Following

DNase treatment, total RNA samples were depleted of ribosomal

RNA using the Ribo-Zero Gold rRNA Removal Kit “epidemiol-

ogy” (Illumina).

Probe design
Non-overlapping head-to-tail 120-nucleotide probes were designed

using the Array software (Agilent Technologies). A total of 35,624

probes were designed to cover 3,924 M. tuberculosis H37Rv ORFs

(Agilent probe library M_tub_h37rv_ASM19595v2_32_1, ELID num-

ber 3037441). Using Megablast, it was verified that all genes of MTB

were matched by at least one probe and that only a negligible frac-

tion of the probes could be mapped on the mouse and human cDNA

sequences from Ensembl.

Preparation of libraries for transcriptional sequencing
RNA libraries for Path-seq were prepared using the SureSelectXT

strand-specific RNA target enrichment for Illumina multiplexed

sequencing. RNA libraries for RNA-seq were prepared using the

SureSelectXT strand-specific RNA kit, but were not hybridized to

probes and indexed separately.

Briefly, the protocol followed was as follows:

• RNA from rRNA-depleted samples was enzymatically fragmented,

and double-stranded cDNA was produced with adapters ligated to

both ends.

• The library was then amplified using provided primers which

hybridize to the previously inserted adapters, therefore allowing a

linear amplification to all transcripts present in the sample. In the

case of non-enriched RNA-seq samples, sample indexes were also

inserted during this PCR.

• For Path-seq libraries, double-stranded cDNA ligated to adapters

was also amplified and then incubated at 65°C for 24 h with the

set of biotinylated oligonucleotides specifically designed to cap-

ture MTB transcripts, as described above.

• The hybridized sequences were captured with magnetic strepta-

vidin beads (M-270, Invitrogen).

• They were next linearly amplified using provided primers and

indexed during PCR.

Before sequencing, libraries were assessed for quality and frag-

ment size by Bioanalyzer and with a Qubit Fluorometer (Invitrogen)

to determine cDNA concentration. Resulting libraries were

sequenced on the Illumina NextSeq Instrument using mid output

150 v2 reagents. Paired-end 75 bp reads were processed following

Illumina default quality filtering steps.

Transcription abundance from sequencing data
Raw FASTQ read data were processed using the R package

DuffyNGS as described previously (Vignali et al, 2011). Briefly, raw

reads pass through a 3-stage alignment pipeline: (i) a prealignment

stage to filter out unwanted transcripts, such as rRNA, mitochon-

drial RNA, albumin, and globin; (ii) a main genomic alignment

stage against the genome(s) of interest; and (iii) a splice junction

alignment stage against an index of standard and alternative exon

splice junctions. Reads from samples of mixed host–pathogen RNA

and extracellular MTB controls were aligned to a combined M. tu-

berculosis H37Rv (ASM19595v2) and Mus Musculus (GRCm38.p6)

genome. Reads from samples of MSM RNA were aligned to

M. smegmatis mc2155 genome (ASM1500v1). All alignments were

performed with Bowtie 2 (Langmead & Salzberg, 2012), using the

command line option “very-sensitive”. BAM files from stages 2 and

3 are combined into read depth wiggle tracks that record both

uniquely mapped and multiply mapped reads to each of the forward

and reverse strands of the genome(s) at single-nucleotide resolution.

Multiply mapped reads are prorated over all highest-quality aligned

locations. Gene transcript abundance is then measured by summing

total reads landing inside annotated gene boundaries, expressed as

both RPKM and raw read counts. Two stringencies of gene abun-

dance are provided using all aligned reads and by just counting

uniquely aligned reads.

Differential expression
For both infection models (in vitro and in vivo), we used DESeq2

(Love et al, 2014) to identify gene expression changes between
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intracellular and extracellular MTB at each sampled time point. We

used rounded raw read counts estimated by DuffyNGS (as described

above) as input for DESeq2. Genes with absolute log2 fold change

bigger than one and multiple hypothesis-adjusted P-value below

0.01 and 0.05, for the in vitro and in vivo data, respectively, were

considered differentially expressed. For the in vivo samples, only

genes with non-zero counts in any of the replicates were considered

in DESeq2.

For Msmeg0916 overexpression, we used a panel of 5 DE tools to

identify gene expression changes between induced (+ATc) and unin-

duced (�ATc). The tools included (i) RoundRobin (in-house); (ii)

RankProduct (Breitling et al, 2004); (iii) significance analysis of

microarrays (SAM) (Tusher et al, 2001); (iv) EdgeR (Robinson &

Smyth, 2008); and (v) DESeq2 (Love et al, 2014). Each DE tool was

called with appropriate default parameters and operated on the

same set of transcription results, using RPKM abundance units for

RoundRobin, RankProduct, and SAM and raw read count abun-

dance units for DESeq2 and EdgeR. All 5 DE results were then syn-

thesized, by combining gene DE rank positions across all 5 DE tools.

Specifically, a gene’s rank position in all 5 results was averaged,

using a generalized mean to the 1/2 power, to yield the gene’s final

net rank position. Each DE tool’s explicit measurements of differen-

tial expression (fold change) and significance (P-value) were simi-

larly combined via appropriate averaging (arithmetic and geometric

mean, respectively). Genes with averaged absolute log2 fold change

bigger than one and multiple hypothesis-adjusted P-value below

0.01 were considered differentially expressed.

MTB signed transcriptional network
We compiled a signed (stating the positive or negative nature of

each TF–gene interaction) wiring diagram of MTB transcriptional

regulatory network. The compiled MTB network included 4,635 TF–

gene interactions (2,296 and 2,339 instances of activation and

repression, respectively) with both physical (detected with ChIP-seq

experiments) and functional evidence (detected with transcriptional

profiling). The compiled network contained 2,001 genes and 136

TFs with at least one target. The initial ChIP-seq derived MTB net-

work consisted of 6,581 interactions occurring in the �150 bp to

+70 bp region of genes’ promoter reported by Minch et al (Data ref:

Minch et al 2015). We expanded that MTB ChIP-seq network by tak-

ing into account operon organizations. For a given TF–gene interac-

tion, if the target gene is part of an operon, we included all other

members of the operon as potential targets of the corresponding TF.

The expanded MTB ChIP-seq network contained 12,188 interac-

tions. Finally, we filtered out interactions that did not change at

least 20% in the relevant TF-overexpressing strain (compared to the

WT strain). Up-regulation of the target gene in the TF-overexpres-

sing strain was interpreted as positive interaction (the opposite for

down-regulation).

Identification of transcription factors with differential activity in
intracellular MTB (using NetSurgeon)
We identified potential TFs with increased or decreased regulatory

activity in intracellular MTB (respect to extracellular controls) at

each sampled time point using the method recently developed by

Michael et al (2016) called the NetSurgeon algorithm. Briefly,

NetSurgeon identifies TFs whose differential regulatory activity is

likely responsible for the observed transcriptional changes between

two states of interest. In our case, we wanted to identify TFs that

drive differential expression between intracellular MTB and their

controls. Changes in TF activities are estimated based on the expres-

sion of their target genes (derived from DESeq2 output). TF regulons

are extracted from a signed transcriptional regulatory network speci-

fied by the user. The signed MTB transcriptional network model

used in this study is described above (and available at: http://net

works.systemsbiology.net/mtb). NetSurgeon’s scoring is based on

the hypergeometric test distribution (Michael et al, 2016). Three

important NetSurgeon’s considerations are as follows: (i) Increase

and decrease in TF activity are independently scored; (ii) only target

genes differentially expressed (according to user’s defined P-values,

q-values, and fold change cutoffs) in the proper direction impact TF

scores. This means that in case of increased activity, only genes sig-

nificantly down-regulated and up-regulated will contribute to the

score of their repressors and activators, respectively; and (iii) TF

scores are defined not only by the number of target genes that are

differentially expressed in the correct direction, but also by their

adjusted P-values (associated with the differential expression analy-

sis performed with DESeq2). The weight of each gene in the scores

of its transcriptional regulators is proportional to the –log2 of its

adjusted P-value. Thus, NetSurgeon’s score is not homogeneous dis-

tributed among TFs’ targets but it is affected by the differential

expression significance of each gene. To reduce false positives (i.e.,

misleading presence of TFs with small number of known targets at

the top of our TF scores ranking) due to overlap between regulons,

only TFs with at least five targets were considered in this analysis.

Furthermore, we considered TFs in the top 15 of NetSurgeon’s score

ranking as the ones with differential activity. This threshold was

selected based on the NetSurgeon’s results when we compared sus-

ceptible and antibiotic resistance Escherichia coli transcriptomes.

Among the top 15 TFs, we were able to recall TFs known to be

involved in multidrug resistance (such as MarA and homolog Rob,

Ruiz & Levy, 2010). TFs with < 5 targets with differential expression

or with contradicting trends (similar number of activated and

repressed targets moving in the same direction) were excluded from

the NetSurgeon’s top 15 ranking. For the in vivo and 8 h in vitro

data, the next two TFs outside the top 15 ranking were included to

compensate for multiple TFs that were filtered out.

ChIP-seq
The madR overexpression strain was induced for the approximate

duration of one cell doubling (4 h for MSM) using an ATc concen-

tration of 100 ng/ml culture. DNA–protein interactions were charac-

terized as described previously (Data ref: Minch et al, 2015).

Libraries were prepared using ThruPLEX DNA-seq Kit (Takara)

using standard protocol. Samples were sequenced on the Illumina

550 NextSeq instrument, generating unpaired 20–30 million 75-bp

reads per sample. Raw FASTQ read data were processed using the R

package DuffyNGS as described previously (Vignali et al, 2011). For

consensus motif determination, we searched for conserved DNA

sequences within � 50 nucleotides of high-quality (score > 0.7)

ChIP-seq peak centers using MEME (Bailey & Elkan, 1994).

Measuring viability of madR overexpression strains
Wild-type and madR overexpression strain cultures were grown into

mid-log phase. For assessing growth on agar plates, OD of the broth

culture was adjusted up to 0.5, and serial dilutions were spotted in
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7H10 containing 0.5% (v/v) glycerol and 10% (v/v) OADC plates,

with or without 100 ng/ml ATc. In the case of the overexpression

strain, 50 ng/ml hygromycin was added to the solid medium.

Extraction and analysis of total lipids and mycolic acids
Lipids were extracted from BCG and MSM cells in three fractions as

describes by Dobson et al (1985), with a few modifications. Briefly,

outside apolar lipids from dried pellets were extracted with two con-

secutive extractions with 4 ml of petroleum ether (60–80°C) and

dried. Then, inside apolar and polar lipids were extracted following

Dobson protocol.

Outside, inside apolar, and polar lipid extracts, along with delipi-

dated pellets from MSM and BCG, were subjected to alkaline hydrol-

ysis using tetrabutylammonium hydroxide (TBAH) as previously

described (Kremer et al, 2002). Aliquots (15,000 cpm) from each

outside, inside apolar, and polar lipid extracts were analyzed by thin

layer chromatography (TLC) utilizing Silica Gel 60 F254 plates

(Merck) developed once in the solvent system CHCl3/CH3OH/H2O

(60:16:2, v/v/v). However, FAME and MAME aliquots (15,000 cpm)

were resolved through TLC using petroleum ether/acetone (95:5,

v/v) or by two-dimensional silver ion argentation thin layer chro-

matography (2D-TLC; Kremer et al, 2002). Autoradiograms were

produced after exposing Carestream� Kodak� BioMax� MR film for

3 days. To determine the intensity of TLC spots, densitometric analy-

sis using Adobe Photoshop CC 2015 was performed.

Data availability

The datasets and computer code produced in this study are available

in the following databases:

• In vivo Path-seq data: Gene Expression Omnibus GSE116394

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116394

• In vitro Path-seq/RNA-seq data: Gene Expression Omnibus

GSE116357 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE116357

• MadR RNA-seq data: Gene Expression Omnibus GSE116027

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116027

• MadR ChIP-seq data: Gene Expression Omnibus GSE116084

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116084

• Hypoxia/reaeration RNA-seq data: Gene Expression Omnibus

GSE116353 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE116353

• The Gene Regulatory Network to implement NetSurgeon: MTB

Network Portal Data Center http://networks.systemsbiology.net/

mtb/data-center

• R notebook with scripts for performing computation analyses:

GitHub https://github.com/baliga-lab

Expanded View for this article is available online.
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