Intratumoral Delivery of MDNA55, an Interleukin-4 Receptor Targeted Immunotherapy, by MRI-Guided Convective Delivery for the Treatment of Recurrent Glioblastoma

Achal Achrol
John Wayne Cancer Institute and Pacific Neuroscience Institute, Santa Monica, CA, USA, achrol@jwci.org

Manish Aghi

Krystof Bankiewicz

Martin Bexon

Sotirios Bisdas

See next page for additional authors

Follow this and additional works at: https://digitalcommons.psjhealth.org/other_pubs

Part of the Neurology Commons, and the Oncology Commons

Recommended Citation
Achrol, Achal; Aghi, Manish; Bankiewicz, Krystof; Bexon, Martin; Bisdas, Sotirios; Brem, Steven; Brenner, Andrew; Butowsk, Nicholas; Coello, Melissa; Han, Seunggu Jude; Kesari, Santosh; Merchant, Fahar; Randazzo, Dina; Roettger, Diana; Vogelbaum, Michael; Vrionis, Frank; Zabek, Miroslaw; and Sampson, John, "Intratumoral Delivery of MDNA55, an Interleukin-4 Receptor Targeted Immunotherapy, by MRI-Guided Convective Delivery for the Treatment of Recurrent Glioblastoma" (2018). Books, Presentations, Posters, Etc. 47.
https://digitalcommons.psjhealth.org/other_pubs/47
Intratumoral Delivery of MDNA55, an Interleukin-4 Receptor Targeted Immunotherapy, by MRI-Guided Convective Delivery for the Treatment of Recurrent Glioblastoma

Achal Achrol1, Manish Aghi2, Krystof Bankiewicz2, Martin Bexon3, Sotirios Bisdas4, Steven Brem5, Andrew Brenner6, Nicholas Butowski3, Melissa Coello3, Seunggu Ju Han7, Santosh Kesari1, Fahar Merchant5, Dina Randazzo8, Diana Roettger3, Michael Vogelbaum3, Frank Vonion10, Mirosław Zabecki1 and John Sampson8

1John Wayne Cancer Institute and Pacific Neuroscience Institute, Santa Monica, CA, USA, 2University of California San Francisco, San Francisco, CA, USA, 3Medicenna BioPharma, Houston, TX, USA, 4AG, Image Analysis Group, London, United Kingdom, 5Hospital of the University of Pennsylvania, Philadelphia, PA, USA, 6University of Texas Health San Antonio, San Antonio, TX, USA, 7Oregon Health and Science University, Portland, OR, USA, 8Duke University Medical Center, Durham, NJ, USA, 9Cleveland Clinic, Cleveland, OH, USA, 10Boca Raton Regional Hospital, Boca Raton, FL, USA, 11Mazovian Brodnowski Hospital, Warsaw, Poland

BACKGROUND

- Treatment options for patients with recurrent GBM are very limited and positive outcomes remain very rare.1,2
- Tumor-targeted therapies for recurrent GBM has been limited by suboptimal delivery of therapeutic agents.
- Intratumoral delivery of MDNA55 using MRI-guided convection enhanced delivery (CED) is currently being tested in a Phase 2 open label study in patients with recurrent GBM (NCT02958895).
- MDNA55 is co-infused with Gadolinium-based contrast agent (GdDTPA) to allow real-time monitoring of drug distribution and to optimize intratumoral catheter placement.

MDNA55: TARGETING THE INTERLEUKIN-4 RECEPTOR

- MDNA55 consists of a bioengineered circularly permuted IL-4 (cpl-IL-4) fused to the catalytic domain of Pseudomonas exotoxin A (PE).3
- MDNA55 binds to IL-4 receptor (IL-4R) overexpressed by GBM and immunosuppressive cells of the tumor microenvironment.4
- This results in internalization of MDNA55 in the target cells where protease-mediated cleavage of the pro-apoptotic domain of MDNA55 (i.e. PE) results in cell death by arresting protein synthesis.4

RESULTS:

To date, 39 subjects have been enrolled in this clinical trial. Preliminary results of MDNA55 distribution are available for 23 subjects. Total volume of MDNA55 was initially administered to subjects based on tumor size (Table 1, Group 1).

Table 2. Subjects receiving adaptive infusion volumes based on tumor size (n=12)

<table>
<thead>
<tr>
<th></th>
<th>Vol of enhancing mass (cm³)</th>
<th>Vol of infusion (mL)</th>
<th>Vol of distribution (mL)</th>
<th>% Coverage Enhancing lesion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>(stdev)</td>
<td>8.2</td>
<td>32.7</td>
<td>66.4</td>
</tr>
<tr>
<td>Median</td>
<td>(range)</td>
<td>5.3</td>
<td>27.0</td>
<td>58.9</td>
</tr>
</tbody>
</table>

Evaluation of drug distribution patterns and safety data suggested that improvements to drug delivery could be further enhanced by moving to a fixed volume of 60 mL administered via 4 catheters and allowing placement outside the peritumoral area. (Table 1, Group 2).

Table 3. Subjects receiving fixed infusion volume of 60 mL (n=11)

<table>
<thead>
<tr>
<th></th>
<th>Vol of enhancing mass (cm³)</th>
<th>Vol of infusion (mL)</th>
<th>Vol of distribution (mL)</th>
<th>% Coverage Enhancing lesion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>(stdev)</td>
<td>8.3</td>
<td>59.6</td>
<td>103.1</td>
</tr>
<tr>
<td>Median</td>
<td>(range)</td>
<td>6.8</td>
<td>60.0</td>
<td>76.3</td>
</tr>
</tbody>
</table>

Although increased infusion volumes (exceeding 40 mL) led to increased mean volume of distribution, it did not improve the target percentage coverage of the enhancing lesion (Table 3, Fig 2).

Figure 2. Percent coverage of enhancing lesion (left Y-axis) and volume of distribution (right Y-axis) versus volume of infusion; SD = Standard Deviation

SAFETY OF MDNA55

- No systemic toxicity following doses of 18 – 240 µg of MDNA55.
- No clinically significant laboratory abnormalities.
- Drug-related adverse events were primarily neurological/aggravation of pre-existing neurological deficits characteristic with GBM.

<table>
<thead>
<tr>
<th>AEs ≥ Grade 3</th>
<th>Worst CTCAE Grade (n)</th>
<th>Relatednessa</th>
<th>SAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 4</td>
<td>Grade 3</td>
<td>D = Drug</td>
<td>Y = Yes</td>
</tr>
<tr>
<td>Seizure</td>
<td>2</td>
<td>D, I / D, I</td>
<td>Y/N</td>
</tr>
<tr>
<td>Hemiparesis</td>
<td>2</td>
<td>D, I / D, I</td>
<td>N/N</td>
</tr>
<tr>
<td>Hydrocephalus</td>
<td>1</td>
<td>D, I</td>
<td>Y</td>
</tr>
<tr>
<td>Hemoptysis</td>
<td>1</td>
<td>D, I</td>
<td>Y</td>
</tr>
<tr>
<td>Stroke</td>
<td>1</td>
<td>I</td>
<td>Y/N</td>
</tr>
</tbody>
</table>

Psychiatric Disorders

- Depression 1
- D, I

Nervous System Disorders

- Seizure
- Hemiparesis
- Hydrocephalus
- Depression

MDNA55: PATTERNS OF RESPONSE

Case 1: Subject experienced increase in contrast enhancement lasting over 120 days, due to pseudo-progression, the result of local immune reaction to inflammatory infiltration seen with immunotherapies. Over the following 8 months, subject experienced continual tumor decline eventually reaching to below baseline.

Case 2: Early onset response. Subject with a partial response (PR); tumor continued to decline significantly after MDNA55 treatment in the absence of any pseudo-progression. Subject is still on ongoing trial.

CONCLUSIONS

- Realtime imaging with co-infused GdDTPA distribution enables optimization of catheter placement and infusion parameters.
- Infusion volumes exceeding 40 mL and placement of catheters outside the enhancing tumor did not improve the target percentage coverage of the tumor and may contribute to increased safety events.
- Under the current protocol version, all subjects are receiving individualized volume of MDNA55 (according to tumor size), but not exceeding 40 mL to minimize risks of target effects.
- There is early evidence of sustained disease control and biologic activity of MDNA55.
- Further refinement of MDNA55 regimen can enhance patient benefits.

METHODS:

- GBM at 1st or 2nd relapse
- KPS ≥ 70
- Tumor Diameter ≥ 2 cm, ≤ 4 cm
- MRI - Tumor Size and Location
- Surgical Placement of 1-4 Catheters
- Real-Time Monitoring of MDNA55 Distribution (GdDTPA)
- Patient Safety
- Tumor Response Assessment by RANO-based criteria

Primary Endpoint: CR PR
Secondary Endpoints: OS PFS

Table 1. Key CED Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Group 1</th>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug Conc.</td>
<td>1.5 µg/mL</td>
<td>1.5 - 3.0 µg/mL</td>
</tr>
<tr>
<td>Vol of Infusion</td>
<td>Based on tumor size</td>
<td>Fixed (60 mL)</td>
</tr>
<tr>
<td>Tracer / conc.</td>
<td>Gadolinium; 7mmol</td>
<td>Gadolinium; 7mmol (then 2mmol)</td>
</tr>
<tr>
<td>Flow rate</td>
<td>Up to 50 µL/min/catheter</td>
<td>Total flow rate of all catheters does not exceed 50 µL/min</td>
</tr>
<tr>
<td># Catheters / Placement</td>
<td>1 - 4 catheters in tumor region</td>
<td>4 catheters, if possible (min of 2 catheters in tumor region and remaining catheters within 2 cm of peritumoral margin)</td>
</tr>
<tr>
<td>Real-Time Infusion Monitoring</td>
<td>First 3 - 6 hours of infusion</td>
<td>Total Infusion Time</td>
</tr>
</tbody>
</table>

*Concentration of gadolinium was reduced to 2 mmol in later versions of the protocol due to FDA and EMA recommendation to minimize exposure in humans.

REFERENCES


ACKNOWLEDGEMENT

This Research is Partly Supported by a Product Development Grant from Cancer Prevention and Research Institute of Texas (CPRIT) awarded to Medicenna BioPharma, Houston, TX.