2-2019

Technology: Inside the Black Box -- Managing Neuro Patients

Mary Kay Bader

Follow this and additional works at: https://digitalcommons.psjhealth.org/other_pubs

Part of the Critical Care Nursing Commons
Technology: Inside the Black Box

Mary Kay Bader RN, MSN, CCNS, CNN, CCRN, FNCS, FAHA
Neuro Critical Care CNS
Mission Hospital, Mission Viejo CA
Badermk@aol.com

Disclosures

- Neuro Critical Care Society
 - Vice President/Board of Directors
- Honorarium
- Bard
- Scientific Advisory Board/Stock Options
 - Cerebrotech
 - Neuroptics
 - Ceribell

Objectives

- Identify the pathophysiology and cellular processes related to brain injury responses
- Describe the indications, functions, data analysis, and suggested interventions with various monitors of the brain
- Apply this technology to the care of the critically injured neuro patient using evidenced based protocols

4 Factors

- CBF
- Pressure
- Oxygen
- Metabolism

Physiology: Cerebral Blood Flow

- CBF = CPP / CVR
- Optimal CPP > 60 mm Hg and sometimes higher in TBI
- Normal CPP does not ensure CBF is adequate to meet the needs of the injured brain

If you put in the Gizmo....You have to know the Physiology too!
Physiology: Cerebral Blood Flow

- **Oxygen**
 - Low PaO2 creates vasodilation of cerebral blood vessels
 - High PaO2 (200-400 mm Hg) creates vasoconstriction

- **Carbon Dioxide**
 - Low PaCO2 creates vasoconstriction
 - High PaCO2 creates vasodilation

CBF: Indirect/Non-Invasive Transcranial Dopplers

- Non-invasive study using ultrasound to detect changes in the velocity of blood in the arteries of the brain

- **Arteries**
 - Extra-cranial ICA
 - Middle Cerebral Artery
 - Anterior Cerebral Artery
 - Posterior Cerebral Artery
 - Basilar/Vertebral Arteries

CBF: Invasive

- **Thermal diffusion probe**
 - Uses 2 thermisters 5mm apart/embedded on catheter
 - Heats distal thermistor to measure difference in temperature between 2 sites on catheter
 - Absolute flow measurements ml/100gm/min
 - Normal CBF: > 70 ml/100g/min

Myocardial Stunning: “tako tsubo”

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>PbtO2</th>
<th>CBF</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>23</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>16.5</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>9.5</td>
<td>9.5</td>
</tr>
<tr>
<td>10</td>
<td>8.3</td>
<td>7.5</td>
</tr>
<tr>
<td>12</td>
<td>8.5</td>
<td>8.5</td>
</tr>
<tr>
<td>14</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Impact of Nimodipine on PbtO2 and CBF

Pressure

Impact of Nimodipine on PbtO2 and CBF
Physiologic Changes: Intracranial Pressure

- Theories on Brain Compartment
 - 80% brain
 - 10% blood
 - 10% CSF
- If one increases the other two decrease
- Compensatory mechanisms

ICP Placement

- Procedure
 - Prep, cleanse scalp and drape
 - Incision right frontal made & twist drill used to gain access
 - Dura is opened with blunt stylet/irrigate
 - EVD catheter passed into the ventricle
 - Confirm CSF flow
 - Incision is closed with suture
 - CSF system connected to drainage system

ICP Systems: Types of transducers: Fluid vs Fiberoptic

ICP: Nursing Implications CSF Drainage

- Level CSF drainage system with zero reference point
- Pressure Transducer
 - Transducer position at phlebostatic axis (PMH: point of maximal impulse
 4th ICS mid chest)
 - For every inch (2.5 cm) the heart is offset from the reference of the transducer, a 2 mm Hg of error is introduced

Physiology: Intracranial Pressure

- Normal range
 - 0-15 mm Hg
- Abnormal ranges > 20 mm Hg

Cerebral Perfusion Pressure

MAP – ICP = CPP

Optimal CPP in TBI

2016: 60-70 mm Hg
Intracranial Pressure

Non Invasive ICP

Pupils: Assessing the “Beat” of the Brain

- Pupillary exam is vital to monitor potential increases in ICP
- High inter-examiner variability (up to 39%) and a severe lack of reliability is reported.

Inter-rater Reliability of Pupillary Assessments

Results: From 2329 paired assessments, the inter-rater reliability between practitioners was only moderate for pupil size (k = 0.54), shape (k = 0.62), and reactivity (k = 0.40). Only 33.3% of pupils scored as non-reactive by practitioners were scored as non-reactive by pupillometry.

Considerations

- Medications
 - Fentanyl affects pupillary reflex dilation
 - Morphine affects pupillary size/constriction velocity (bolus dose)
 - Symmetrical changes
 - Midazolam can affect constriction velocity but it is symmetrical
 - Paralytics no impact
 - Propofol slows but symmetrical
 - Barbiturates
 - Makes them big and non-reactive

SICU – New Admits with Neuro Diagnoses q 1h

- 49 yr old female admitted post op following clipping of a cerebral aneurysm. Pupillometer Assessment @2000 shows normal NPI and Constriction Velocity.

Right Eye Pupil Reactivity	4.5
Left Eye Pupil Reactivity	3.75
Right Eye Min. Aperture	3.25 mm
Left Eye Min. Aperture	3.1 mm
Right Eye Percent Change	30.9%
Left Eye Percent Change	26.5%
Right Eye Constriction Velocity	1.25 mm/sec
Left Eye Constriction Velocity	0.86 mm/sec
Careful reassessment by our Night Shift RN reveals the following:

- The NPI changed 1 hour before the pupil blew. MD was notified 3 times with the pupilometer changes!!! Patient went to CT and OR for emergent craniectomy.

Oxygen

- Regional Detection Penumbra Area
- Global Measurement Contralateral to Injury

Physiology: Brain Tissue Oxygen (PbtO2)

- Normal: 20-40 mm Hg
- Risk of death increases
 - < 15 mm Hg for 30 minutes
 - < 10 mm Hg for 10 minutes
- PbtO2 < 5 mm Hg
 - High mortality
- PbtO2 < 2 mm Hg - neuronal death

BP and Oxygen in the Brain

- Guiding MAP according to PbtO2
 - Hgb 6.9 – Tx with 2 u Packed RBCs 9-10am
Brain Perfusion: BP and ECG Relationship

- ICP 3-15 mm Hg
 - It is NOT a intracranial pressure problem!
- ECG rhythm changes...brady- tachy- pauses... Pacer wire accessed

Focal Vasospasm

- Vasospasm: Stat TCDs ordered: ↑ TCD velocity

Cerebral Autoregulation

- Autoregulation Prx
 - ICP and CPP Relationship
 - • Correlation (-1 to 0)
 - • As CPP increases, ICP decreases
 - • Indicates intact cerebrovascular reactivity
 - • + Correlation (>0 to 1)
 - • As CPP increases, so does ICP
 - • Indicates the loss of cerebrovascular reactivity
 - • Pressure passive dilatation

Autoregulation

- • Concept of Prx measurement as a dynamic assessment of cerebral autoregulation

- PRx show the U-shape relationship with mean CPP (200 patients).
 - This indicate that for low CPP and CPP above 90 mm Hg both autoregulation and pressure reactivity are defective.

Outcome and PRx opt during first 48 hours after SAH

- [Graph showing outcomes and PRx optimisation during first 48 hours after SAH]

Slide credit: NCS Multimodality Monitoring, Marek Czosnyka & Chad Miller
Metabolism

Microdialysis Technology

Microdialysis – Key Parameters

Electrophysiology and Seizures

Electrophysiology

- Monitoring for seizure activity
- Continuous EEG (detecting non-convulsive status)

Brain glucose is a very important marker due to the increasing evidence in showing lower glucose levels in seizure activity. Tight glucose control can be achieved through a combination of genuine treatment and early detection through monitoring.

Table 1: Data illustrates the values of metabolic parameters important in the management of patients with subarachnoid hemorrhage.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline</th>
<th>Max Post hemorrhage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood glucose</td>
<td>124 mg/dl</td>
<td>23 mg/dl</td>
</tr>
</tbody>
</table>

Heldb et al, Neurocrit Care, 2010;12(3):317-33
Non-convulsive Seizures (NCS) or Non-convulsive Status Epilepticus aka NCSE

- Prospective observational study/ Adult NICU
- Patients with altered mental status
- Data collected EEG
- 21% of patients (36 of 170) had NCS/NCSE

EEG with Ceribell

- Ceribell EEG
 - Disposable head band with pocket size EEG recorder
 - 10 channel EEG device that records EEG and transforms EEG waves into sounds

Spreading Depolarizations

Mission – Status Case

Mission – No Seizure Case
Putting it All Together
CASE EE

Mechanism: Pre-hospital

• 20 year old female driver single car into center divider wall of freeway
 • Car rolled then went airborne
 • GCS at scene 5
 • BP 104/p HR 80 R 28

Trauma Admit 1727

• GCS 1-2-1 with R pupil 4 sluggish and L pupil 4 deviated outward with no reaction
 • BP 139/75 HR 104 RR 9
• Intubated with 7.5 ET tube/OG placed/Foley
• Labs
 • H/H: 9.7/29 Plt 360,000
 • Na 137 K 3.0 Cl 105 CO2 20
 • PT 11.6 INR 1.1 PTT 28 sec Fibrinogen 327
• Radiology
 • Multiple facial fractures/skull fractures
 • Bilateral cerebral contusions, cerebral edema with shift

2045 Hypothermia Initiated

• ICP 70s and PbtO2 13.8
 • 2045 Iced saline 2 liters given
 • 2130 Arctic sun on
 • Mannitol given
• ICP 70s
 • ICP remains > 70 mmHg with PbtO2 low
 • To CT scan
 • Numerous calls to neurosurgery

CT Scan Admission 8:58pm
To OR for ICP/PbtO2

CT 9:58pm
ICP 73 mm Hg
OR Decompressive Craniectomy 2247

- 2316 Cut time
 - ICP in high 90s and PbtO2 5 mm Hg
- 2317 3% saline given
- 2330
 - Fluid bolus – 3 bottles albumin/Packed RBCs
- 2338 Temp 33 degrees
- 0008
 - Closure
 - Rapid infuser for blood products
 - 2 grams Ca Cl given

To SICU at 0055

- ICP 96 mm Hg on arrival
- Neurosurgeon discusses condition with parents
- Next 7 hours delicate balance...
 - ICP 90s down to 50 mm Hg by 7am
Coma Emergence

- GCS Improves during Days 13-21
- 7–9 - 10–11
- ICP/PbtO2 removed on Day 15
Coma Emergence

- SICU x 30 days
- Tx to Acute Rehab Unit
- ARU stay x 22 days
 - Wernicke's aphasia
 - Improves throughout ARU stay
- Cranioplasty Day 54
- Discharged home on Day 59 after TBI
- Home/Out pt Tx

Home Life

- Outpatient speech cognitive therapy for fluent dysphasia (Wernicke's aphasia) which is improving
- Walking - 10 weeks post
- ADLS on own

1 year
Back to UCI

Badermk@aol.com