Mertk is a therapeutic target in combination with radiation to promote adaptive immune tumor responses

Garth Tormoen
Oregon Health & Science University, Portland, OR, USA; Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR, USA, Garth.Tormoen@providence.org

Jason R Baird
Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR, USA, Jason.Baird@providence.org

Gwen Kramer
Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR, USA, GWEN.KRAMER@providence.org

Shelly Bambina
Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR, USA, Shelly.Bambina@providence.org

Marka R Crittenden
Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR, USA, Marka.Crittenden@providence.org

Follow this and additional works at: https://digitalcommons.psjhealth.org/sitc2018

Recommended Citation
Tormoen, Garth; Baird, Jason R; Kramer, Gwen; Bambina, Shelly; Crittenden, Marka R; and Gough, Michael J., "Mertk is a therapeutic target in combination with radiation to promote adaptive immune tumor responses" (2018). Society for Immunotherapy of Cancer 2018 Annual Meeting Posters. 12.
https://digitalcommons.psjhealth.org/sitc2018/12

This Book is brought to you for free and open access by the Earle A. Chiles Research Institute Collection at Providence St. Joseph Health Digital Commons. It has been accepted for inclusion in Society for Immunotherapy of Cancer 2018 Annual Meeting Posters by an authorized administrator of Providence St. Joseph Health Digital Commons. For more information, please contact digitalcommons@providence.org.
Mertk is a therapeutic target in combination with radiation to promote adaptive immune tumor responses

Garth W. Tormoen1, Shelly Bambina2, Jason R. Baird2, Gwen Kramer2, Michael J. Gough2, Marka R. Crittenden2,3

1 - Department of Radiation Medicine, Oregon Health & Science University, Portland, OR USA
2 - Earl A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR USA
3 - The Oregon Clinic, Portland, OR USA

Abstract

Background: Mertk is a member of the Tyro3-Axl-Mertk (TAM) family of receptors and regulates phagocytosis of dying cells by macrophages. Cancer cells killed by radiation therapy direct reprogramming of macrophages into immune suppressive phenotypes. Mertk−/− mice grafted with immunogenic tumors have enhanced tumor control following irradiation compared to wild type mice. Goat is the endogenous ligand for Mertk and its ability to signal through Mertk requires the post-translational vitamin K-dependent modification that is inhibited by warfarin.

Methods: Mertk−/− and WT mice were injected subcutaneously with 5E4 CT26 cells (BALB/c) or 5E5 Panc02-SIY cells (C57Bl/6) and allowed to grow to 5 mm before treatment with 250 µg anti-Cd40 antibodies, warfarin (1.25 mL drinking water) and subjected to a single dose of irradiation (12.5 Gy) followed by 250 µg of anti-OX40 or PBS 1P. 1-day post-RT. Peripheral blood was collected 6 days after RT and evaluated by Flow Cytometry for SIY-containing CD8+ T cells.

Results: Mertk−/− mice have increased survival following RT in CT26 tumor models. CT26 tumor cure in Mertk−/− BALB/c mice was abrogated by depletion of CD8 T cells indicating that ligation of Mertk in tumor macrophages suppresses endogenous anti-tumor immunity following radiation therapy. Similarly, warfarin-treated mice had higher rates of tumor cure following radiation that was also abrogated by CD8 depletion. In C57Bl/6 mice, Mertk−/− alone does not affect responses to radiation therapy in the Panc02-SIY tumor model, but the combination of radiation therapy with anti-OX40 co-stimulation of T cell responses resulted in an increase in peripheral blood SIY+ CD8 T cells 5 days after treatment, and significantly improved survival compared to radiation alone.

Conclusions: Mertk−/− mice show increased responsiveness to RT in immunogenic CT26 tumors. Mertk−/− mice experience CT26 tumor cure after RT in a CD8-dependent manner. Poorly immunogenic pancreatic tumors do not have increased responses to RT in Mertk−/− mice. In poorly immunogenic pancreatic tumors, the combination of RT and anti-OX40 significantly increased overall survival compared to RT alone, and resulted in increased numbers of long-term cures in Mertk−/− mice. Warfarin alone at 1.25 mL in drinking water did not affect growth of CT26 tumor grafts, but enhanced RT control of tumor growth in a CD8-dependent manner similar to Mertk−/− mice. Mertk expression in tumor macrophages prevents tumor immune responses to RT in tumor antigen-specific T cells following radiation therapy. In poorly immunogenic tumors, combining RT with additional immune therapy is needed to increase T cell responses, but tumor cure is still limited by expression of Mertk.

Acknowledgements

This work was supported in part by funding from the National Cancer Institute (R01CA182311 to M.J.G and R01CA205844 to M.R.C.).