Pegzilarginase in combination with agonist anti-OX40 therapy enhances T cell priming and effector function leading to improved tumor regression and survival

Melissa Kasiewicz
Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR, USA, MELISSA.KASIEWICZ@providence.org

Annah Rolig
Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR, USA, Annah.Rolig@providence.org

Elizabeth Sturgill
Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR, USA, Elizabeth.Sturgill@providence.org

Mark Badeaux

Scott Rowlinson

See next page for additional authors

Follow this and additional works at: https://digitalcommons.psjhealth.org/sitc2018

Part of the Oncology Commons

Recommended Citation
Kasiewicz, Melissa; Rolig, Annah; Sturgill, Elizabeth; Badeaux, Mark; Rowlinson, Scott; and Redmond, William L., "Pegzilarginase in combination with agonist anti-OX40 therapy enhances T cell priming and effector function leading to improved tumor regression and survival" (2018). Society for Immunotherapy of Cancer 2018 Annual Meeting Posters. 6.
https://digitalcommons.psjhealth.org/sitc2018/6
Pegzilarginase in combination with agonist anti-OX40 therapy enhances effector function leading to improved tumor regression and survival

Melissa J. Kasiewicz1, Annah S. Rolig1, Elizabeth R. Sturgill1, Mark Badeaux2, Scott W. Rowlinson2, and William L. Redmond1

1Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR
2Aeglea BioTherapeutics, Inc, Austin, TX

INTRODUCTION

- Tumors defective in arginine biosynthesis are dependent on extracellular arginine.
- Pegzilarginase (AEB1102; Aeglea Biotherapeutics) is a bioengineered pegylated arginase 1 currently in clinical trials.
- In syngeneic tumor models, arginine depletion through pegzilarginase treatment has been shown (poster p#345) to:
 - Induce tumor autophagy
 - Increase MHCII expression
 - Activate T cells

Given that T cell activation can induce OX40 expression, we hypothesized that the combination of pegzilarginase with an OX40 agonist (aOX40) could synergize to enhance T cell priming and effector function, resulting in improved anti-tumor activity.

METHODS

Tumor implant + pegzilarginase (3 mg/kg; 1x/wk for 4 weeks)

Day 8 Day 12 +aOX40 (250 ug)

Tumor implant + pegzilarginase (3 mg/kg; 1x/wk for 4 weeks)

Day 8 Day 12 +aOX40 (250 ug)

16T CT26 (BALB/c) or 7.56S MCA-205 (C57BL/6) cells were implanted on day 0. For survival studies, mice were dosed with pegzilarginase+/−aOX40 on day 8, with a second dose of aOX40 on day 12. Subsequent doses of pegzilarginase were given weekly for 4 weeks. Graphs represent combined data from two replicate experiments.

Flow analysis experiments, treatment also began on day 8, followed by tissue harvest 1 week later. Statistics were analyzed by one-way ANOVA. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

TUMOR GROWTH AND SURVIVAL

CONCLUSIONS & FUTURE DIRECTIONS

- Arginine depletion through pegzilarginase synergizes with aOX40 to impair tumor progression.
- Combined pegzilarginase/aOX40 demonstrated superior anti-tumor activity relative to monotherapy.
- Enhanced efficacy is associated with increased effector T cell function.
- These data support exploration of this novel combination in future clinical trials.

MYELOID RESPONSE

- Aeglea BioTherapeutics
- EACRI Flow Cytometry Core
- EACRI Cancer Research Animal Division
- Providence Portland Medical Foundation
- Cancer Prevention and Research Institute of Texas Grant #DP140031 (Aeglea)

Figure 1. CT26 or MCA-205 tumors were implanted on day 0. On day 8, animals were treated with pegzilarginase+/−aOX40 (ip). Pegzilarginase was administered 1x/week for 4 weeks. Tumors were measured 2x/wk or until tumor burden was >175 mm².

Figure 2. CT26 tumor cells were inoculated on d0. Eight days later, mice were treated with pegzilarginase+/−aOX40 (ip). Three days later, TIL and LN were harvested for flow analysis. **P < 0.01.

- Combination therapy associated with increased T-cell activation (IFN-g, gzmA)

Figure 3. Myeloid compartment of CT26 TIL was analyzed for frequency of total macrophages, monocytes and neutrophils on d3 and d7 post-treatment. Arg1: arginase; MFI: Mean fluorescence intensity

- Combination therapy led to decreased arginase in myeloid cells

Figure 4. Graphs depict cell frequency (top) or mean fluorescence intensity (MFI) (bottom) compared to tumor burden using a Spearman correlation. Correlation plots (top), depict results from individual mice. Two cell types (Ki-67+CD8+; macrophage iNOS MFI) were selected to demonstrate negative correlations with tumor size, indicating that greater % or increased MFI of these phenotypes correlates with a smaller tumor size. Spearman correlations and their significance for all cell phenotypes are represented by a heat map (bottom). *P < 0.05, **P < 0.01, ***P < 0.001.

ACKNOWLEDGEMENTS

DISCLOSURES

-Aeglea BioTherapeutics
-EACRI Flow Cytometry Core
-EACRI Cancer Research Animal Division
-Providence Portland Medical Foundation
-Cancer Prevention and Research Institute of Texas Grant #DP140031 (Aeglea)

-Aeglea employees have an equity interest in Aeglea BioTherapeutics, Inc.