4-29-2020

Drugging Chemokine Receptors: Biased CXCR3 Agonists Differentially Regulate Chemotaxis And Inflammation

Jeffrey Smith
Dylan Eiger
Chia-Feng Tsai
Lowell Nicholson
Rachel Glenn

See next page for additional authors

Follow this and additional works at: https://digitalcommons.psjhealth.org/ppmc_internal

Part of the Internal Medicine Commons
Authors
Jeffrey Smith, Dylan Eiger, Chia-Feng Tsai, Lowell Nicholson, Rachel Glenn, Priya Alagesan, Amanda MacLeod, John Jacobs, Tujin Shi, and Sudarshan Rajagopal
Drugging chemokine receptors: Biased CXCR3 agonists differentially regulate chemotaxis and inflammation

Jeffrey S Smith, MD, PhD, 1 DS Eiger, BS, 2 CF Tsai, PhD, 3 LT Nicholson, MD, 2 RA Glenn, BS, 2 P Alagesan, BS, 2 AS MacLeod, MD, 2 AR Atwater, MD, 2 JM Jacobs, PhD, 3 T Shi, PhD, 3 Sudarshan Rajagopal, MD, PhD 2

1 Providence Portland Medical Center, Portland, OR; 2 Duke University, Durham NC; 3 Pacific Northwest National Laboratory, Richland, WA

Introduction

Biased agonism, the ability of different ligands for the same receptor to selectively activate some signaling pathways while blocking others, is now an established paradigm for GPCR signaling. Panel A demonstrates a ‘balanced’ agonist, signaling through both G protein as well as β-arrestin pathways. Panel B shows a pure ‘G protein biased’ agonist, while panel C shows a pure ‘β-arrestin biased’ agonist.

Objectives and Methods

CXCR3 is an important chemokine receptor that regulates T cell-mediated inflammation but has no FDA approved drugs. The goal of this study was to measure biased signaling at CXCR3 and assess the therapeutic potential of selectively targeting certain CXCR3 signaling pathways with biased agonists. Biased signaling was measured through transcriptomic and phosphoproteomic analyses, as well as multidimensional cellular signaling assays. Small molecule biased agonists for G protein and β-arrestin were identified. Inflammatory properties of the biased agonists were tested in a mouse model of T cell allergy.

Results: Endogenous CXCR3 chemokines are biased

CXCR3 panomics. Cellular (A) RNA seq and (B) phosphoprotein clusters in log(2) scale following chemokine stimulation relative to vehicle treatment.

Identification of synthetic biased agonists. Small molecule CXCR3 ligands were assessed for (E) G protein activity or (F) β-arrestin recruitment. (G) VUF10 was identified as a β-arrestin-biased agonist, while VUF11 was identified as a G protein-biased agonist relative to CXCL11, a full agonist at both G protein and β-arrestin pathways. Both agonists have the same affinity for CXCR3. *p<0.05 by two-way ANOVA

Conclusions

- Endogenous CXCR3 chemokines (CXCL9, CXCL10, and CXCL11) are not redundant and induce vastly different cellular signaling events.
- Distinct CXCR3 signaling events appear to be physiologically relevant, as a CXCR3 β-arrestin-biased agonist increased chemotaxis and T cell-mediated inflammation relative to a CXCR3 G-biased agonist.
- When designing drugs targeting chemokine receptors, looking beyond affinity and G protein signaling pathways will likely be necessary for a desired therapeutic benefit.

Acknowledgements

The authors recognize R. J. Lefkowitz for his helpful comments and suggestions. This work was primarily supported by T32GM7171 (JSS) 1R01GM122798 (SR).