Document Type

Article

Publication Date

5-1-2017

Publication Title

AJNR. American journal of neuroradiology

Keywords

Adult; Brain Neoplasms; Diffusion Magnetic Resonance Imaging; Disease Progression; Disease-Free Survival; Female; Glioblastoma; Humans; Male; Middle Aged; Prognosis; Proportional Hazards Models; Retrospective Studies

Abstract

BACKGROUND AND PURPOSE: ADC as a marker of tumor cellularity has been promising for evaluating the response to therapy in patients with glioblastoma but does not successfully stratify patients according to outcomes, especially in the upfront setting. Here we investigate whether restriction spectrum imaging, an advanced diffusion imaging model, performed after an operation but before radiation therapy, could improve risk stratification in patients with newly diagnosed glioblastoma relative to ADC.

MATERIALS AND METHODS: Pre-radiation therapy diffusion-weighted and structural imaging of 40 patients with glioblastoma were examined retrospectively. Restriction spectrum imaging and ADC-based hypercellularity volume fraction (restriction spectrum imaging-FLAIR volume fraction, restriction spectrum imaging-contrast-enhanced volume fraction, ADC-FLAIR volume fraction, ADC-contrast-enhanced volume fraction) and intensities (restriction spectrum imaging-FLAIR 90th percentile, restriction spectrum imaging-contrast-enhanced 90th percentile, ADC-FLAIR 10th percentile, ADC-contrast-enhanced 10th percentile) within the contrast-enhanced and FLAIR hyperintensity VOIs were calculated. The association of diffusion imaging metrics, contrast-enhanced volume, and FLAIR hyperintensity volume with progression-free survival and overall survival was evaluated by using Cox proportional hazards models.

RESULTS: Among the diffusion metrics, restriction spectrum imaging-FLAIR volume fraction was the strongest prognostic metric of progression-free survival (

CONCLUSIONS: Restriction spectrum imaging-derived cellularity in FLAIR hyperintensity regions may be a more robust prognostic marker than ADC and conventional imaging for early progression and poorer survival in patients with glioblastoma. However, future studies with larger samples are needed to explore its predictive ability.

Clinical Institute

Cancer

Clinical Institute

Neurosciences (Brain & Spine)

Department

Neurosciences

Department

Diagnostic Imaging

Department

Oncology

Share

COinS